Iron-Catalyzed Aminoalkylative Carbonylative Cyclization of Alkenes toward α-Tetralones.

Org Lett

Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, Liaoning China.

Published: April 2024

Carbonylative multifunctionalization of alkenes is an efficient approach to introduce multiple functional groups into one molecule from easily available materials. Herein, we developed an iron-catalyzed radical relay carbonylative cyclization of alkenes with acetamides. Various α-tetralones can be constructed in moderate yields from readily available substrates with an earth-abundant iron salt as the catalyst.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.orglett.4c00726DOI Listing

Publication Analysis

Top Keywords

carbonylative cyclization
8
cyclization alkenes
8
iron-catalyzed aminoalkylative
4
aminoalkylative carbonylative
4
alkenes α-tetralones
4
α-tetralones carbonylative
4
carbonylative multifunctionalization
4
multifunctionalization alkenes
4
alkenes efficient
4
efficient approach
4

Similar Publications

1,4-Dibenzodiazepines, an important component of nitrogen-containing heterocycles, are widely present in drugs. Herein, we developed a photochemical radical cascade cyclization reaction of isocyanides with α-carbonyl bromides under mild conditions. A sequence of 11-alkyl-substituted 1,4-dibenzodiazepines were produced in 53%-85% yields, demonstrating excellent tolerance towards various functional groups.

View Article and Find Full Text PDF

This study investigates the potential of boron trifluoride etherate (BF·OEt) to trigger unprecedented reactions of 2-oxoaldehydes with nitriles and amides/sulphonamides. In contrast to the mechanism in conventional reactions, the α-carbonyl group in 2-oxoaldehydes induces a cyclization pathway to be followed when reacting with nitriles, yielding 4-amidooxazoles. Additionally, reactions with weak nucleophiles produce β-keto amides/sulphonamides.

View Article and Find Full Text PDF

A modular approach was developed for the first catalytic asymmetric total syntheses of naturally occurring C30 terpene quinone methides and their non-natural stereoisomers, which feature the presence of an unprecedented spiro[4.4]nonane-containing 6-6-6-5-5-3 hexacyclic skeleton. Resting on a chiral phosphinamide-catalyzed enantioselective reduction of 2,2-disubstituted cyclohexane-1,3-dione, a concise route for the synthesis of enantioenriched 6-6 bicyclic fragment was developed.

View Article and Find Full Text PDF

A straightforward and highly diastereoselective synthesis of -4-hydroxypiperidines is presented. This method allows access to C2 and C4 substituted piperidines, bearing a tetrasubstituted carbon stereocenter at C4. -Disubstituted homoallylic amines and ketoaldehydes as carbonyl partners have been rarely used in aza-Prins cyclizations, expanding the scope of this reaction.

View Article and Find Full Text PDF

Chemodivergent, enantio- and regioselective couplings of alkynes, aldehydes and silanes enabled by nickel/N-heterocyclic carbene catalysis.

Sci Bull (Beijing)

December 2024

State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China. Electronic address:

Divergent synthesis of valuable molecules through common starting materials and metal catalysis represents a longstanding challenge and a significant research goal. We here describe chemodivergent, highly enantio- and regioselective nickel-catalyzed reductive and dehydrogenative coupling reactions of alkynes, aldehydes, and silanes. A single chiral Ni-based catalyst is leveraged to directly prepare three distinct enantioenriched products (silyl-protected trisubstituted chiral allylic alcohols, oxasilacyclopentenes, and silicon-stereogenic oxasilacyclopentenes) in a single chemical operation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!