We present a novel system, a liquid-state pillar[5]arene decorated with tri(ethylene oxide) chains, that brings electron-donor and electron-acceptor molecules into proximity for efficient exciplex formation. The electron-accepting guests exhibit a blue-purple emission from a localized excited state upon excitation in common solvents. However, directly dissolving the guests in the electron-donating pillar[5]arene liquid (a bulk system) results in visible green emission from the formed exciplexes. In the bulk system, the guest molecules are always surrounded by excess pillar[5]arene molecules, resulting in the formation of mainly inclusion-type exciplexes. In the bulk system, energy migration occurs between the pillar[5]arene molecules. Excitation of the pillar[5]arenes results in a more intense green exciplex emission than that observed upon direct excitation of the guests. In summary, the pillar[5]arene liquid is a novel system for achieving efficient exciplex formation and energy migration that is different from typical solvent and solid systems.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.3c14582DOI Listing

Publication Analysis

Top Keywords

exciplex formation
12
bulk system
12
electron-donating pillar[5]arene
8
liquid novel
8
novel system
8
efficient exciplex
8
pillar[5]arene liquid
8
exciplexes bulk
8
pillar[5]arene molecules
8
energy migration
8

Similar Publications

Magnetic field effects (MFEs) in thermally activated delayed fluorescence (TADF) materials have been shown to influence the reverse intersystem crossing (RISC) and to impact on electroluminescence (EL) and conductivity. Here, we present a novel model combining Cole-Cole and Lorentzian functions to describe low and high magnetic field effects originating from hyperfine coupling, the Δg mechanism, and triplet processes. We applied this approach to organic light-emitting devices of third generation based on tris(4-carbazoyl-9-ylphenyl)amine (TCTA) and 2,2',2″-(1,3,5-benzinetriyl)-tris(1-phenyl-1-H-benzimidazole) (TPBi), exhibiting blue emission, to unravel their loss mechanisms.

View Article and Find Full Text PDF

In this article, we present several organic synthetic way to synthesize a family of five polyaromatic molecules based on a cyclophane core. Our strategies revolves around palado-catalyzed substitution on a [2.2]paracyclophane (pCp) building block.

View Article and Find Full Text PDF

The formation of exciplex and triplet-triplet transfer in organic room temperature phosphorescent guest-host materials.

J Chem Phys

November 2024

College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China.

Organic materials typically do not phosphoresce at room temperature because both intersystem crossing (ISC) and phosphorescence back to the electronic ground state are slow, compared to the nonradiative decay processes. A group of organic guest-host molecules breaks this rule. Their phosphorescence at room temperature can last seconds with a quantum efficiency of over 10%.

View Article and Find Full Text PDF

We have shown that palladium-catalyzed cascade processes provide modular access to rigid quinoline-containing tetracyclic amines. This modular approach enables fine-tuning of the through-space charge transfer (TSCT) state formation between the lone pair localized on the nitrogen atom in the cage moiety and the quinoline moiety by variation of both the intramolecular -aryl distance and quinoline substitution. Decreasing this -aryl distance enhances the formation of the TSCT species, giving control over the emission color and photoluminescence quantum yield.

View Article and Find Full Text PDF

A spectral shift and new emission bands in the green and red regions have been observed in deep blue exciplex-based organic light-emitting diodes (OLEDs) using carbazole-based materials, namely, tris(4-carbazoyl-9-ylphenyl)amine (TCTA). To deeply understand the origin of these new bands, single-layer and bilayer TCTA-based OLEDs subjected to electrical and optical (ultraviolet (UV)) stresses were investigated by using various optical, electrical, morphological, and chemical measurements. The results showed that the stress-induced emission bands primarily originate from morphological changes rather than chemical changes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!