Structural and functional profile of phytases across the domains of life.

Curr Res Struct Biol

Inspiralis Ltd., Innovation Centre, Norwich Research Park, Colney Lane, NR4 7UH, Norwich, UK.

Published: March 2024

Phytase enzymes are a crucial component of the natural phosphorus cycle, as they help make phosphate bioavailable by releasing it from phytate, the primary reservoir of organic phosphorus in grain and soil. Phytases also comprise a significant segment of the agricultural enzyme market, used primarily as an animal feed additive. At least four structurally and mechanistically distinct classes of phytases have evolved in bacteria and eukaryotes, and the natural diversity of each class is explored here using advances in protein structure prediction and functional annotation. This graphical review aims to provide a succinct description of the major classes of phytase enzymes across phyla, including their structures, conserved motifs, and mechanisms of action.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10982552PMC
http://dx.doi.org/10.1016/j.crstbi.2024.100139DOI Listing

Publication Analysis

Top Keywords

phytase enzymes
8
structural functional
4
functional profile
4
profile phytases
4
phytases domains
4
domains life
4
life phytase
4
enzymes crucial
4
crucial component
4
component natural
4

Similar Publications

The use of exogenous phytase and vitamin D metabolites such as 25-hydroxycholecalciferol (25-OH-D) for poultry is well consolidated, but the potential for additive effects when supplementing both requires further investigation. This study investigated possible interactions between supplementation of 25-OH-D and high doses of phytase for broilers fed Ca- and P-deficient diets. A total of 1 200 one-d-old male broiler chicks were randomly allocated from one of four dietary treatments in a 2 × 2 factorial arrangement: 600 or 2 000 phytase units (FYT)/kg and with or without the inclusion of 25-OH-D at 69 µg/kg, with 12 replicates of 25 broilers each.

View Article and Find Full Text PDF

In tropical and subtropical climate regions, heat stress is one of the main causes of production losses in laying quails, aggravated by the antinutritional effects of the phytate in diet ingredients, which negatively affect the bioavailability of minerals, especially calcium and phosphorus. This situation results in a reduction in production and the quality of eggs from commercial laying quails. Several nutritional strategies are utilized to reduce the adverse effects of high temperatures and antinutritional factors such as phytate.

View Article and Find Full Text PDF

Recent advances in phytase thermostability engineering towards potential application in the food and feed sectors.

Food Sci Biotechnol

January 2025

Integrated Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203 India.

Article Synopsis
  • This review highlights recent advancements in engineering thermostable phytase through genetic modification and immobilization techniques over the last seven years.
  • Genetic modifications have improved the enzyme's thermostability and functionality, while immobilization methods have helped retain 50-60% of its activity at temperatures above 50°C.
  • Phytase is essential in the food and feed industries, as it reduces phytate content to enhance nutritional value in flour and poultry feed, making it a robust option for high-temperature applications.
View Article and Find Full Text PDF

Interactions of the emerging fungus with reveal phenotypic changes with direct implications on the response to stress and virulence.

Microbiol Spectr

December 2024

Laboratório de Bioquímica e Imunologia das Micoses, Departamento de Microbiologia e Parasitologia, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil.

Unlabelled: is an emerging fungal pathogen notable for its resistance to multiple antifungals and ability to survive in various environments. Understanding the interactions between and environmental protozoa, such as could provide insights into fungal adaptability and pathogenicity. Two isolates (MMC1 and MMC2) were co-cultured with to examine interaction dynamics, survival, stress responses, growth, virulence, biofilm formation, and antifungal susceptibility.

View Article and Find Full Text PDF

Dietary Phytic Acid, Dephytinization, and Phytase Supplementation Alter Trace Element Bioavailability-A Narrative Review of Human Interventions.

Nutrients

November 2024

Laboratory of Clinical Nutrition and Dietetics, Department of Nutrition and Dietetics, School of Physical Education, Sport Science and Dietetics, University of Thessaly, 42100 Trikala, Greece.

Background: Phytic acid is abundant in plant-based diets and acts as a micronutrient inhibitor for humans and non-ruminant animals. Phytases are enzymes that break down phytic acid, releasing micronutrients and enhancing their bioavailability, particularly iron and zinc. Deficiencies in iron and zinc are significant public health problems, especially among populations with disease-associated malnutrition or those in developing countries consuming phytic acid-rich diets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!