Cannabinoid Receptor Signaling is Dependent on Sub-Cellular Location.

bioRxiv

Oregon Health and Science University, Department of Chemical Physiology and Biochemistry, Portland, OR, 97239, USA.

Published: March 2024

G protein-coupled receptors (GPCRs) are membrane bound signaling molecules that regulate many aspects of human physiology. Recent advances have demonstrated that GPCR signaling can occur both at the cell surface and internal cellular membranes. Our findings suggest that cannabinoid receptor 1 (CB1) signaling is highly dependent on its subcellular location. We find that intracellular CB1 receptors predominantly couple to Gαi while plasma membrane receptors couple to Gαs. Here we show subcellular location of CB1, and its signaling, is contingent on the choice of promoters and receptor tags. Heterologous expression with a strong promoter or N-terminal tag resulted in CB1 predominantly localizing to the plasma membrane and signaling through Gαs. Conversely, CB1 driven by low expressing promoters and lacking N-terminal genetic tags largely localized to internal membranes and signals via Gαi. Lastly, we demonstrate that genetically encodable non-canonical amino acids (ncAA) offer a solution to the problem of non-native N-terminal tags disrupting CB1 signaling. We identified sites in CB1R and CB2R which can be tagged with fluorophores without disrupting CB signaling or trafficking using (-cyclooctene attached to lysine (TCO*A)) and copper-free click chemistry to attach fluorophores in live cells. Together, our data demonstrate the origin of location bias in cannabinoid signaling which can be experimentally controlled and tracked in living cells through promoters and novel CBR tagging strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10983902PMC
http://dx.doi.org/10.1101/2024.03.21.586146DOI Listing

Publication Analysis

Top Keywords

cb1 signaling
12
signaling
9
cannabinoid receptor
8
subcellular location
8
receptors couple
8
plasma membrane
8
cb1
6
receptor signaling
4
signaling dependent
4
dependent sub-cellular
4

Similar Publications

Tetrahydrocannabinol (THC) is the principal psychoactive compound derived from the cannabis plant Cannabis sativa and approved for emetic conditions, appetite stimulation and sleep apnea relief. THC's psychoactive actions are mediated primarily by the cannabinoid receptor CB. Here, we determine the cryo-EM structure of HU210, a THC analog and widely used tool compound, bound to CB and its primary transducer, G.

View Article and Find Full Text PDF

Endocannabinoids have been shown to play a complex role in the pathophysiology of a number of cardiovascular disorders. In the present study, the effects of the two major endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG) were investigated in human coronary artery smooth muscle cells (HCASMC) and human coronary artery endothelial cells (HCAEC) with regard to potential atheroprotective and anti-inflammatory effects. In HCASMC, AEA showed an inhibitory effect on platelet-derived growth factor-induced migration, but not proliferation, independent of major cannabinoid-activatable receptors (CB, CB, TRPV1), while 2-AG left both responses unaffected.

View Article and Find Full Text PDF

Background/aim: No specific pharmacological treatment regimen for idiopathic pulmonary fibrosis (IPF) exists. Therefore, new antiinflammatory therapeutic strategies are needed. Cannabinoids (CBs), known for their inflammation-modulating and antifibrotic effects, may be potential medication candidates for treating IPF.

View Article and Find Full Text PDF

Design of Small Non-Peptidic Ligands That Alter Heteromerization between Cannabinoid CB and Serotonin 5HT Receptors.

J Med Chem

January 2025

Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona 08028, Spain.

Activation of cannabinoid CB receptors (CBR) by agonists induces analgesia but also induces cognitive impairment through the heteromer formed between CBR and the serotonin 5HT receptor (5HTR). This side effect poses a serious drawback in the therapeutic use of cannabis for pain alleviation. Peptides designed from the transmembrane helices of CBR, which are predicted to bind 5HTR and alter the stability of the CBR-5HTR heteromer, have been shown to avert CBR agonist-induced cognitive impairment while preserving analgesia.

View Article and Find Full Text PDF

alleviates experimentally acetic acid- induced ulcerative colitis in rats: targeting CB1/SIRT/MAPK signaling pathways.

Immunopharmacol Immunotoxicol

February 2025

Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Center, Cairo, Egypt.

Background: Ulcerative colitis (UC) is a frequent inflammatory bowel disease (IBD) that causes long-lasting inflammation in the innermost lining of the rectum and colon.

Objective: The aim of this study was to evaluate the therapeutic effect of () on the amelioration of acetic acid-induced colitis in rats.

Materials And Methods: Group 1: normal control group was intrarectally administered saline solution (0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!