Tumors comprise a complex ecosystem consisting of many cell types that communicate through secreted factors. Targeting these intercellular signaling networks remains an important challenge in cancer research. Cardiotrophin-like cytokine factor 1 (CLCF1) is an interleukin-6 (IL-6) family member secreted by cancer-associated fibroblasts (CAFs) that binds to ciliary neurotrophic factor receptor (CNTFR), promoting tumor growth in lung and liver cancer. A high-affinity soluble receptor (eCNTFR-Fc) that sequesters CLCF1 has anti-oncogenic effects. However, the role of CLCF1 in mediating cell-cell interactions in cancer has remained unclear. We demonstrate that eCNTFR-Fc has widespread effects on both tumor cells and the tumor microenvironment and can sensitize cancer cells to KRAS inhibitors or immune checkpoint blockade. After three weeks of treatment with eCNTFR-Fc, there is a shift from an immunosuppressive to an immunostimulatory macrophage phenotype as well as an increase in activated T, NKT, and NK cells. Combination of eCNTFR-Fc and αPD1 was significantly more effective than single-agent therapy in a syngeneic allograft model, and eCNTFR-Fc sensitizes tumor cells to αPD1 in a non-responsive GEM model of lung adenocarcinoma. These data suggest that combining eCNTFR-Fc with KRAS inhibition or with αPD1 is a novel therapeutic strategy for lung cancer and potentially other cancers in which these therapies have been used but to date with only modest effect. Overall, we demonstrate the potential of cancer therapies that target cytokines to alter the immune microenvironment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10984090PMC
http://dx.doi.org/10.21203/rs.3.rs-4046823/v1DOI Listing

Publication Analysis

Top Keywords

tumor microenvironment
8
cancer therapies
8
tumor cells
8
cancer
7
ecntfr-fc
6
tumor
5
clcf1-cntfr axis
4
axis drives
4
drives immunosuppressive
4
immunosuppressive tumor
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!