Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Breast cancer invasion into adipose tissue strongly influences disease progression and metastasis. The degree of cancer cell invasion into adipose tissue depends on numerous biochemical and physical properties of cancer cells, adipocytes, and other key components of adipose tissue. We model breast cancer invasion into adipose tissue as a physical process by carrying out simulations of active, cohesive spherical particles (cancer cells) invading into confluent packings of deformable polyhedra (adipocytes). We quantify the degree of invasion by calculating the interfacial area between cancer cells and adipocytes. We determine the long-time value of versus the activity and strength of the cohesion between cancer cells, as well as mechanical properties of the adipocytes and extracellular matrix (ECM) in which the adipocytes are embedded. We show that the degree of invasion collapses onto a master curve by plotting it versus a dimensionless energy scale , which grows linearly with mean-square fluctuations and persistence time of the cancer cell velocities, is inversely proportional to the pressure of the system, and has an offset that increases with the cancer cell cohesive energy. The condition, , indicates that cancer cells will invade the adipose tissue, whereas for , the cancer cells and adipocytes remain demixed. We also show that constraints on adipocyte positions by the ECM decrease relative to that obtained for unconstrained adipocytes. Finally, spatial heterogeneity in structural and mechanical properties of the adipocytes in the presence of ECM impedes invasion relative to adipose tissue with uniform properties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10984007 | PMC |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!