With a single circulating vector-borne virus, the basic reproduction number incorporates contributions from tick-to-tick (co-feeding), tick-to-host and host-to-tick transmission routes. With two different circulating vector-borne viral strains, resident and invasive, and under the assumption that co-feeding is the only transmission route in a tick population, the invasion reproduction number depends on whether the model system of ordinary differential equations possesses the property of neutrality. We show that a simple model, with two populations of ticks infected with one strain, resident or invasive, and one population of co-infected ticks, does not have Alizon's neutrality property. We present model alternatives that are capable of representing the invasion potential of a novel strain by including populations of ticks dually infected with the same strain. The invasion reproduction number is analysed with the next-generation method and via numerical simulations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10983997 | PMC |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!