Neurophotonics beyond the Surface: Unmasking the Brain's Complexity Exploiting Optical Scattering.

ArXiv

Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université, Collège de France, 24 rue Lhomond, 75005 Paris, France.

Published: March 2024

The intricate nature of the brain necessitates the application of advanced probing techniques to comprehensively study and understand its working mechanisms. Neurophotonics offers minimally invasive methods to probe the brain using optics at cellular and even molecular levels. However, multiple challenges persist, especially concerning imaging depth, field of view, speed, and biocompatibility. A major hindrance to solving these challenges in optics is the scattering nature of the brain. This perspective highlights the potential of complex media optics, a specialized area of study focused on light propagation in materials with intricate heterogeneous optical properties, in advancing and improving neuronal readouts for structural imaging and optical recordings of neuronal activity. Key strategies include wavefront shaping techniques and computational imaging and sensing techniques that exploit scattering properties for enhanced performance. We discuss the potential merger of the two fields as well as potential challenges and perspectives toward longer term applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10984001PMC

Publication Analysis

Top Keywords

nature brain
8
neurophotonics surface
4
surface unmasking
4
unmasking brain's
4
brain's complexity
4
complexity exploiting
4
exploiting optical
4
optical scattering
4
scattering intricate
4
intricate nature
4

Similar Publications

Objectives: Endoplasmic reticulum (ER) stress-induced protein homeostasis perturbation is a core pathological element in the pathogenesis of neurodegenerative diseases. This study aims to clarify the unique role played by C/EBP homologous protein (CHOP) as a biomarker of the unfolded protein response (UPR) in the etiology of chronic pain and related cognitive impairments following chronic constrictive nerve injury (CCI).

Methods: The memory capability following CCI was assessed utilizing the Morris water maze (MWM) and fear conditioning test (FCT).

View Article and Find Full Text PDF

Developmental Trajectories and Differences in Functional Brain Network Properties of Preterm and At-Term Neonates.

Hum Brain Mapp

January 2025

Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico.

Premature infants, born before 37 weeks of gestation can have alterations in neurodevelopment and cognition, even when no anatomical lesions are evident. Resting-state functional neuroimaging of naturally sleeping babies has shown altered connectivity patterns, but there is limited evidence on the developmental trajectories of functional organization in preterm neonates. By using a large dataset from the developing Human Connectome Project, we explored the differences in graph theory properties between at-term (n = 332) and preterm (n = 115) neonates at term-equivalent age, considering the age subgroups proposed by the World Health Organization for premature birth.

View Article and Find Full Text PDF

Acute stress disorder (ASD) is a transient psychiatric disorder that may arise subsequent to abrupt, extreme trauma exposure, and serves as a reliable indicator for the subsequent development of posttraumatic stress disorder (PTSD) (Bryant, 2011; Battle, 2013). It exhibits rapid progression in the aftermath of trauma and persists for a duration of days or weeks (not exceeding one month), manifesting symptoms of dissociation, re-experiencing, avoidance, and hyperarousal (Bielas et al., 2018).

View Article and Find Full Text PDF

White-matter tracts play a pivotal role in transmitting sensory and motor information, facilitating interhemispheric communication and integrating different brain regions. Meanwhile, sensorimotor disturbance is a common symptom in patients with major depressive disorder (MDD). However, the role of aberrant sensorimotor white-matter system in MDD remains largely unknown.

View Article and Find Full Text PDF

Dysfunctions in autophagy, a cellular mechanism for breaking down components within lysosomes, often lead to neurodegeneration. The specific mechanisms underlying neuronal vulnerability due to autophagy dysfunction remain elusive. Here we show that autophagy contributes to cerebellar Purkinje cell (PC) survival by safeguarding their glycolytic activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!