Diabetes mellitus (DM), a prevalent metabolic disorder, is associated with widespread damage to bodily systems, notably causing significant dysfunction within the peripheral and central nervous systems (CNS). The primary objective of this study is to explore the extent of DM's impact on cognitive and behavioral functions and to evaluate the therapeutic potential of ethanol leaf extracts from (ZJ) and (EA) in mitigating these adverse effects. Utilizing an established animal model, we aimed to determine the effectiveness of these plant extracts in ameliorating the cognitive impairments commonly seen in diabetic states. In our experimental framework, we allocated Wistar rats (n=6 per group) into eight different groups, inducing DM through alloxan administration. The intervention groups were treated orally with either the standard antidiabetic drug glibenclamide or varying doses of ZJ and EA extracts over periods of seven and 21 days. Throughout the study, we carefully tracked fluctuations in blood glucose levels, noting considerable decreases, particularly following the 21-day treatment interval. Post-treatment, the rats' cognitive functions were assessed using the Morris water maze (MWM) test. This evaluation revealed significant cognitive enhancement in the diabetic rats administered with ZJ and EA extracts, with these groups displaying reduced latency in finding the submerged platform, indicative of improved learning and memory. These observations were statistically significant (p<0.01). The findings underscore the hypoglycemic effects of ZJ and EA extracts and suggest their viability as cognitive enhancers in the context of DM. The protective effects of these extracts against cognitive decline caused by DM are clear. They add important new information to the research on natural phytochemicals for managing chronic diseases. This study opens new avenues for the application of these substances in treating neurocognitive disorders associated with DM.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10982838 | PMC |
http://dx.doi.org/10.7759/cureus.55400 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!