A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Recruitment of a threatened foundation oyster species varies with large and small spatial scales. | LitMetric

Understanding how habitat attributes (e.g., patch area and sizes, connectivity) control recruitment and how this is modified by processes operating at larger spatial scales is fundamental to understanding population sustainability and developing successful long-term restoration strategies for marine foundation species-including for globally threatened reef-forming oysters. In two experiments, we assessed the recruitment and energy reserves of oyster recruits onto remnant reefs of the oyster Saccostrea glomerata in estuaries spanning 550 km of coastline in southeastern Australia. In the first experiment, we determined whether recruitment of oysters to settlement plates in three estuaries was correlated with reef attributes within patches (distances to patch edges and surface elevation), whole-patch attributes (shape and size of patches), and landscape attributes (connectivity). We also determined whether environmental factors (e.g., sedimentation and water temperature) explained the differences among recruitment plates. We also tested whether differences in energy reserves of recruits could explain the differences between two of the estuaries (one high- and one low-sedimentation estuary). In the second experiment, across six estuaries (three with nominally high and three with nominally low sedimentation rates), we tested the hypothesis that, at the estuary scale, recruitment and survival were negatively correlated to sedimentation. Overall, total oyster recruitment varied mostly at the scale of estuaries rather than with reef attributes and was negatively correlated with sedimentation. Percentage recruit survival was, however, similar among estuaries, although energy reserves and condition of recruits were lower at a high- compared to a low-sediment estuary. Within each estuary, total oyster recruitment increased with patch area and decreased with increasing tidal height. Our results showed that differences among estuaries have the largest influence on oyster recruitment and recruit health and this may be explained by environmental processes operating at the same scale. While survival was high across all estuaries, growth and reproduction of oysters on remnant reefs may be affected by sublethal effects on the health of recruits in high-sediment estuaries. Thus, restoration programs should consider lethal and sublethal effects of whole-estuary environmental processes when selecting sites and include environmental mitigation actions to maximize recruitment success.

Download full-text PDF

Source
http://dx.doi.org/10.1002/eap.2968DOI Listing

Publication Analysis

Top Keywords

energy reserves
12
oyster recruitment
12
recruitment
10
estuaries
9
spatial scales
8
patch area
8
processes operating
8
remnant reefs
8
reef attributes
8
differences estuaries
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!