Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This study focused on the heterogeneity in progress notes written by physicians or nurses. A total of 806 days of progress notes written by physicians or nurses from 83 randomly selected patients hospitalized in the Gastroenterology Department at Kagawa University Hospital from January to December 2021 were analyzed. We extracted symptoms as the International Classification of Diseases (ICD) Chapter 18 (R00-R99, hereinafter R codes) from each progress note using MedNER-J natural language processing software and counted the days one or more symptoms were extracted to calculate the extraction rate. The R-code extraction rate was significantly higher from progress notes by nurses than by physicians (physicians 68.5% vs. nurses 75.2%; p = 0.00112), regardless of specialty. By contrast, the R-code subcategory R10-R19 for digestive system symptoms (44.2 vs. 37.5%, respectively; p = 0.00299) and many chapters of ICD codes for disease names, as represented by Chapter 11 K00-K93 (68.4 vs. 30.9%, respectively; p < 0.001), were frequently extracted from the progress notes by physicians, reflecting their specialty. We believe that understanding the information heterogeneity of medical documents, which can be the basis of medical artificial intelligence, is crucial, and this study is a pioneering step in that direction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10984979 | PMC |
http://dx.doi.org/10.1038/s41598-024-56324-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!