FOXP3 promote the progression of glioblastoma via inhibiting ferroptosis mediated by linc00857/miR-1290/GPX4 axis.

Cell Death Dis

Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550009, Guizhou, China.

Published: April 2024

The oncogenic properties of members belonging to the forkhead box (FOX) family have been extensively documented in different types of cancers. In this study, our objective was to investigate the impact of FOXP3 on glioblastoma multiforme (GBM) cells. By conducting a screen using a small hairpin RNA (shRNA) library, we discovered a significant association between FOXP3 and ferroptosis in GBM cells. Furthermore, we observed elevated levels of FOXP3 in both GBM tissues and cell lines, which correlated with a poorer prognosis. FOXP3 was found to promote the proliferation of GBM cells by inhibiting cell ferroptosis in vitro and in vivo. Mechanistically, FOXP3 not only directly upregulated the transcription of GPX4, but also attenuated the degradation of GPX4 mRNA through the linc00857/miR-1290 axis, thereby suppressing ferroptosis and promoting proliferation. Additionally, the FOXP3 inhibitor epirubicin exhibited the ability to impede proliferation and induce ferroptosis in GBM cells both in vitro and in vivo. In summary, our study provided evidences that FOXP3 facilitates the progression of glioblastoma by inhibiting ferroptosis via the linc00857/miR-1290/GPX4 axis, highlighting FOXP3 as a potential therapeutic target for GBM.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10984987PMC
http://dx.doi.org/10.1038/s41419-024-06619-4DOI Listing

Publication Analysis

Top Keywords

gbm cells
16
foxp3
9
foxp3 promote
8
progression glioblastoma
8
glioblastoma inhibiting
8
inhibiting ferroptosis
8
linc00857/mir-1290/gpx4 axis
8
ferroptosis gbm
8
vitro vivo
8
ferroptosis
6

Similar Publications

DET induces apoptosis and suppresses tumor invasion in glioma cells via PI3K/AKT pathway.

Front Oncol

January 2025

The Translational Research Institute for Neurological Disorders of Wannan Medical College, Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China.

Introduction: Gliomas, particularly glioblastomas (GBM), are highly aggressive with a poor prognosis and low survival rate. Currently, deoxyelephantopin (DET) has shown promising anti-inflammatory and anti-tumor effects. Using clinical prognostic analysis, molecular docking, and network pharmacology, this study aims to explore the primary targets and signaling pathways to identify novel GBM treatment approaches.

View Article and Find Full Text PDF

Glioblastoma (GBM) is a devastating malignant brain tumor with a poor prognosis. GBM is associated with radioresistance. Post-translational modifications (PTMs) such as protein phosphorylation can play an important role in the cellular response to radiation.

View Article and Find Full Text PDF

Background: Glioblastoma multiforme (GBM) is the most prevalent primary brain tumour, with an incidence of 2 per 100,000. The standard clinical treatments do not sufficiently target cell migration and invasion, leading to recurrence after surgical resection and resistance after chemotherapy and radiotherapy. Pre-clinical studies are being conducted to construct artificial substrates that can mimic the tumour microenvironment (TME) to prevent GBM cells from migrating along their primary route through blood vessels and white matter tracts.

View Article and Find Full Text PDF

Glioblastoma (GBM) is the most malignant type of glioma with a very poor prognosis. N6-methyladenosine (m6A) is well-documented to be involved in GBM progression, and FTO is a demethylase. GSTO1 is also associated with tumor progression.

View Article and Find Full Text PDF

Engineered antigen-specific T regulatory cells suppress autoreactivity to the anti-glomerular basement membrane disease antigen.

Kidney Int

January 2025

Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Australia. Electronic address:

Anti-glomerular basement membrane (anti-GBM) disease is accompanied by insufficient antigen-specific T regulatory cells (Tregs) and clonally expanded antigen-specific T conventional cells (Tconvs). In particular, this applied to the immunodominant T cell auto- epitope of type IV collagen, α3(IV)NC1135-145 , presented by HLA-DR15. Here, we investigated whether Tregs engineered to express GBM-T cell receptors (TCR) specific for α3(IV)NC1135- 145 better suppress autoimmunity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!