Proteus mirabilis biofilm expansion microscopy yields over 4-fold magnification for super-resolution of biofilm structure and subcellular DNA organization.

J Microbiol Methods

Laboratory for Scientific Image Analysis SCIAN-Lab, Integrative Biology Program, Institute of Biomedical Sciences ICBM, Faculty of Medicine, University of Chile, Santiago, Chile; Biomedical Neuroscience Institute BNI, Independencia, Santiago, Chile; Centro de Informática Médica y Telemedicina CIMT, Faculty of Medicine, University of Chile, Santiago, Chile; National Center for Health Information Systems CENS, Santiago, Chile.; Red de Equipamiento Científico Avanzado REDECA, Institute of Biomedical Sciences ICBM, Faculty of Medicine, University of Chile, Santiago, Chile; Centro de Modelamiento Matemático, Universidad de Chile, Beauchef 851, Casilla 170-3, Santiago, Chile. Electronic address:

Published: May 2024

Bacterial biofilms form when bacteria attach to surfaces and generate an extracellular matrix that embeds and stabilizes a growing community. Detailed visualization and quantitative analysis of biofilm architecture by optical microscopy are limited by the law of diffraction. Expansion Microscopy (ExM) is a novel Super-Resolution technique where specimens are physically enlarged by a factor of ∼4, prior to observation by conventional fluorescence microscopy. ExM requires homogenization of rigid constituents of biological components by enzymatic digestion. We developed an ExM approach capable of expanding 48-h old Proteus mirabilis biofilms 4.3-fold (termed PmbExM), close to the theoretic maximum expansion factor without gross shape distortions. Our protocol, based on lytic and glycoside-hydrolase enzymatic treatments, degrades rigid components in bacteria and extracellular matrix. Our results prove PmbExM to be a versatile and easy-to-use Super-Resolution approach for enabling studies of P. mirabilis biofilm architecture, assembly, and even intracellular features, such as DNA organization.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mimet.2024.106927DOI Listing

Publication Analysis

Top Keywords

proteus mirabilis
8
mirabilis biofilm
8
expansion microscopy
8
dna organization
8
extracellular matrix
8
biofilm architecture
8
microscopy exm
8
biofilm
4
biofilm expansion
4
microscopy
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!