We show that in highly multimoded nonlinear photonic systems, the optical thermodynamic pressures emerging from different species of the optical field obey Dalton's law of partial pressures. In multimode settings, the optical thermodynamic pressure is defined as the conjugate to the extensive variable associated with the system's total number of modes and is directly related to the actual electrodynamic radiation forces exerted at the physical boundaries of the system. Here, we extend this notion to photonic configuration supporting different species of the optical field. Under thermal equilibrium conditions, we formally derive an equation that establishes a direct link between the partial thermodynamic pressures and the electrodynamic radiation pressures exerted by each polarization species. Our theoretical framework provides a straightforward approach for quantifying the total radiation pressures through the system's thermodynamic variables without invoking the Maxwell stress tensor formalism. In essence, we show that the total electrodynamic pressure in such arrangements can be obtained in an effortless manner from initial excitation conditions, thus avoiding time-consuming simulations of the utterly complex multimode dynamics. To illustrate the validity of our results, we carry out numerical simulations in multimoded nonlinear optical structures supporting two polarization species and demonstrate excellent agreement with the Maxwell stress tensor method.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.517715DOI Listing

Publication Analysis

Top Keywords

optical thermodynamic
12
thermodynamic pressures
12
multimoded nonlinear
12
dalton's law
8
law partial
8
highly multimoded
8
nonlinear photonic
8
photonic systems
8
species optical
8
optical field
8

Similar Publications

Weyl semimetals are a novel class of topological materials with unique electronic structures and distinct properties. HfRhGe stands out as a noncentrosymmetric Weyl semimetal with unconventional superconducting characteristics. Using muon-spin rotation and relaxation (µSR) spectroscopy and thermodynamic measurements, a fully gapped superconducting state is identified in HfRhGe that breaks time-reversal symmetry at the superconducting transition.

View Article and Find Full Text PDF

Modular Light-Emitting Diode Shelving Systems for Scalable Optogenetics.

Methods Mol Biol

December 2024

Flinders Health and Medical Research Institute (FHMRI), College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia.

Optogenetic experiments rely on the controlled delivery of light to diverse biological systems. Impressive devices have been recently developed to stimulate cells and small animals with multiple wavelengths and intensities. However, existing hardware solutions are often limited to a single sample holder, and their design and cost can further limit scalability.

View Article and Find Full Text PDF

Toward Collective Chemistry under Strong Light-Matter Coupling.

J Phys Chem Lett

December 2024

Department of Chemistry and Department of Physics, Westlake University, Hangzhou, Zhejiang 310030, China.

Collective strong light-matter coupling provides a versatile means to manipulate physicochemical properties of molecules and materials. Understanding collective polaritonic dynamics is hindered by the macroscopic number of molecules interacting collectively with photonic modes. We develop a many-body theory to investigate the spectroscopy and dynamics of a molecular ensemble embedded in an optical cavity in the collective strong coupling regime.

View Article and Find Full Text PDF

True Dynamics of Pillararene Host-Guest Binding.

J Chem Theory Comput

December 2024

Changping Laboratory, No. 28 Life Science Park Rd., Beijing 102206, China.

Accurate modeling of host-guest systems is challenging in modern computational chemistry. It requires intermolecular interaction patterns to be correctly described and, more importantly, the dynamic behaviors of macrocyclic hosts to be accurately modeled. Pillar[]arenes as a crucial family of macrocycles play a critical role in host-guest chemistry and biomedical applications.

View Article and Find Full Text PDF

Design of Chemoresponsive Liquid Crystals Using Metal-Coordinating Polymer Surfaces.

ACS Appl Mater Interfaces

December 2024

Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States.

Liquid crystals (LCs), when interfaced with chemically functionalized surfaces, can amplify a range of chemical and physical transformations into optical outputs. While metal cation-binding sites on surfaces have been shown to provide a basis for the design of chemoresponsive LCs, the cations have been found to dissociate from the surfaces and dissolve slowly into LCs, resulting in time-dependent changes in the properties of LC-solid interfaces (which impacts the reliability of devices incorporating such surfaces). Here, we explore the use of surfaces comprising metal-coordinating polymers to minimize the dissolution of metal cations into LCs and characterize the impact of the interfacial environment created by the coordinating polymer on the ordering and time-dependent properties of LCs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!