Considerable attention has been by far paid to stabilizing metallic Zn anodes, where side reactions and dendrite formation still remain detrimental to their practical advancement. Electrolyte modification or protected layer design is widely reported; nonetheless, an effective maneuver to synergize both tactics has been rarely explored. Herein, we propose a localized electrolyte optimization via the introduction of a dual-functional biomass modificator over the Zn anode. Instrumental characterization in conjunction with molecular dynamics simulation indicates local solvation structure transformation owing to the limitation of bound water with intermolecular hydrogen bonds, effectively suppressing hydrogen evolutions. Meanwhile, the optimized nucleation throughout the protein membrane allows uniform Zn deposition. Accordingly, the symmetric cell exhibits an elongated lifespan of 3280 h at 1.0 mA cm/1.0 mAh cm, while the capacity retention of the full cell sustains 91.1% after 2000 cycles at 5.0 A g. The localized electrolyte tailoring via protein membrane introduction might offer insights into operational metal anode protection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.4c02740 | DOI Listing |
Nat Commun
January 2025
Department of Chemistry and Bioscience, Aalborg University, Aalborg East, Denmark.
Enhancing the ion conduction in solid electrolytes is critically important for the development of high-performance all-solid-state lithium-ion batteries (LIBs). Lithium thiophosphates are among the most promising solid electrolytes, as they exhibit superionic conductivity at room temperature. However, the lack of comprehensive understanding of their ion conduction mechanism, especially the effect of structural disorder on ionic conductivity, is a long-standing problem that limits further innovations in all-solid-state LIBs.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Helmholtz Institute Ulm (HIU) Electrochemical Energy Storage, Helmholtzstrasse 11, 89081 Ulm, Germany.
ConspectusLithium-ion batteries (LIBs) based on graphite anodes are a widely used state-of-the-art battery technology, but their energy density is approaching theoretical limits, prompting interest in lithium-metal batteries (LMBs) that can achieve higher energy density. In addition, the limited availability of lithium reserves raises supply concerns; therefore, research on postlithium metal batteries is underway. A major issue with these metal anodes, including lithium, is dendritic formation and insufficient reversibility, which leads to safety risks due to short circuits and the use of flammable electrolytes.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Animal & Dairy Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA.
Residual nitrite (NO) and nitrate (NO) have been widely studied in the past few decades for their function to improve processed meat quality and their impact on human health. In this study we examined how the residual nitrite and nitrate (NO) content of major classes of processed meats products (n = 1132) produced locally from three regions (East Coast, Midwest and West Coast) and plant protein-based meat analogues (n = 53) available at retail in the United States was influenced by their composition, processing, and geographical attributes. We also conducted time-dependent depletion studies and observed different patterns of NO depletion and conversion during processing and storage and correlated them with product quality.
View Article and Find Full Text PDFMolecules
January 2025
Dipartimento di Chimica, Università di Pavia, Via Taramelli 12, 27100 Pavia, Italy.
Spontaneous cleavage reactions normally occur in vivo on amino acid peptide backbones, leading to fragmentation products that can have different physiological roles and toxicity, particularly when the substrate of the hydrolytic processes are neuronal peptides and proteins highly related to neurodegeneration. We report a hydrolytic study performed with the HPLC-MS technique at different temperatures (4 °C and 37 °C) on peptide fragments of different neuronal proteins (amyloid-β, tau, and α-synuclein) in physiological conditions in the presence of Cu and Zn ions, two metal ions found at millimolar concentrations in amyloid plaques. The coordination of these metal ions with these peptides significantly protects their backbones toward hydrolytic degradation, preserving the entire sequences over two weeks in solution, while the free peptides in the same buffer are fully fragmented after the same or even shorter incubation period.
View Article and Find Full Text PDFMolecules
January 2025
School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan 432000, China.
Ultrathin electrolytic copper foils with a thickness of 6 μm were prepared by a test machine using copper sulfate electrolyte with gelatin, hydroxyethyl cellulose (HEC), and sulfonic acid-containing organics as additives. The effects of four sulfonic acid-containing organic additives, sodium 3-mercaptopropanesulfonate (MPS), bis-(sodium sulfopropyl)-disulfide (SPS), sodium 3-[[(dimethylamino)thioxomethyl]thio]propanesulfonate (DPS), and sodium 3-((4,5-dihydrothiazol-2-yl)thio)propane-1-sulfonate (TPS), on the physical property of copper foils were investigated. The results show that all these additives can effectively improve the gloss and tensile strength of electrolytic copper foil, and the texture coefficients of Cu(111) selectivity increase.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!