DLBCNet: A Deep Learning Network for Classifying Blood Cells.

Big Data Cogn Comput

School of Computing and Mathematical Sciences, University of Leicester, Leicester LE1 7RH, UK.

Published: April 2023

Background: Blood is responsible for delivering nutrients to various organs, which store important health information about the human body. Therefore, the diagnosis of blood can indirectly help doctors judge a person's physical state. Recently, researchers have applied deep learning (DL) to the automatic analysis of blood cells. However, there are still some deficiencies in these models.

Methods: To cope with these issues, we propose a novel network for the multi-classification of blood cells, which is called DLBCNet. A new specifical model for blood cells (BCGAN) is designed to generate synthetic images. The pre-trained ResNet50 is implemented as the backbone model, which serves as the feature extractor. The extracted features are fed to the proposed ETRN to improve the multi-classification performance of blood cells.

Results: The average accuracy, average sensitivity, average precision, average specificity, and average f1-score of the proposed model are 95.05%, 93.25%, 97.75%, 93.72%, and 95.38%, accordingly.

Conclusions: The performance of the proposed model surpasses other state-of-the-art methods in reported classification results.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7615784PMC
http://dx.doi.org/10.3390/bdcc7020075DOI Listing

Publication Analysis

Top Keywords

blood cells
16
deep learning
8
proposed model
8
blood
7
average
5
dlbcnet deep
4
learning network
4
network classifying
4
classifying blood
4
cells
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!