Structure-based virtual screening (SBVS) is a key workflow in computational drug discovery. SBVS models are assessed by measuring the enrichment of known active molecules over decoys in retrospective screens. However, the standard formula for enrichment cannot estimate model performance on very large libraries. Additionally, current screening benchmarks cannot easily be used with machine learning (ML) models due to data leakage. We propose an improved formula for calculating VS enrichment and introduce the BayesBind benchmarking set composed of protein targets that are structurally dissimilar to those in the BigBind training set. We assess current models on this benchmark and find that none perform appreciably better than a KNN baseline. We publicly release the BayesBind benchmark at https://github.com/molecularmodelinglab/bigbind.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10980085 | PMC |
J Integr Neurosci
January 2025
Department of Radiology, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, 313000 Huzhou, Zhejiang, China.
Background: Glioma is the most common malignancy in the central nervous system. Even with optimal therapies, glioblastoma (the most aggressive form of glioma) is incurable, with only 26.5% of patients having a 2-year survival rate.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
Centro de Química Médica, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7780272, Chile.
Acute myeloid leukemia (AML) presents significant therapeutic challenges, particularly in cases driven by mutations in the FLT3 tyrosine kinase. This study aimed to develop a robust and user-friendly machine learning-based quantitative structure-activity relationship (QSAR) model to predict the inhibitory potency (pIC values) of FLT3 inhibitors, addressing the limitations of previous models in dataset size, diversity, and predictive accuracy. Using a dataset which was 14 times larger than those employed in prior studies (1350 compounds with 1269 molecular descriptors), we trained a random forest regressor, chosen due to its superior predictive performance and resistance to overfitting.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
Laboratory of Biotechnology, National Higher School of Biotechnology, Ville Universitaire (University of Constantine 3), Ali Mendjeli, BP E66, Constantine 25100, Algeria.
Kynurenine aminotransferase II (KAT-II) is a target for treating several diseases characterized by an excess of kynurenic acid (KYNA). Although KAT-II inactivators are available, they often lead to adverse side effects due to their irreversible inhibition mechanism. This study aimed to identify potent and safe inhibitors of KAT-II using computational and in vitro approaches.
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2024
Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania.
Aurora kinase B (AurB) is a pivotal regulator of mitosis, making it a compelling target for cancer therapy. Despite significant advances in protein kinase inhibitor development, there are currently no AurB inhibitors readily available for therapeutic use. This study introduces a machine learning-assisted drug repurposing framework integrating quantitative structure-activity relationship (QSAR) modeling, molecular fingerprints-based classification, molecular docking, and molecular dynamics (MD) simulations.
View Article and Find Full Text PDFJ Clin Med
January 2025
Physical Medicine and Rehabilitation Unit, Department of Medical and Surgical Sciences, University of Catanzaro "Magna Graecia", 88100 Catanzaro, Italy.
: The evolution of technology has continuously redefined the landscape of rehabilitation medicine. Researchers have long incorporated virtual reality (VR) as a promising intervention, providing immersive therapeutic environments for patients. The emergence of the metaverse has recently further expanded the potential applications of VR to augment the possibilities in rehabilitation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!