Background And Purpose: Diclofenac (DCF) is a non-steroidal anti-inflammatory drug possessing analgesic and antipyretic properties. It is used for the treatment of rheumatoid arthritis pain, osteoarthritis, and acute muscle pain conditions and can be administrated orally, topically or intravenously. Because of its widespread use, hydrophilicity, stability and poor degradation (bioaccumulation in the food chain), DCF is an emerging chemical contaminant that can cause adverse effects in the ecosystems. Taking into account the consumption of DCF in pharmaceutical formulations and its negative impact on the environment, the development of new sensitive, selective, cheap, fast, and online capable analytical devices is needed for on-site applications.
Experimental Approach: This brief review attempts to cover the recent developments related to the use of nanomaterials as catalysts for electrochemical determination of DCF in pharmaceutical formulations, biological fluids and environmental samples.
Key Results: The article aims to prove how electrochemical sensors represent reliable alternatives to conventional methods for DCF analysis.
Conclusion: The manuscript highlights the progress in the development of electrochemical sensors for DCF detection. We have analyzed numerous recent papers (mainly since 2019) on sensors developed for the quantitative determination of DCF, indicating the limit of detection, linear range, stability, reproducibility, and analytical applications. Current challenges related to the sensor design and future perspectives are outlined.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10974820 | PMC |
http://dx.doi.org/10.5599/admet.2116 | DOI Listing |
Polymers (Basel)
December 2024
Green Technology Group, Faculty of Science, Alexandria University, Alexandria 21511, Egypt.
Plastic waste (PW) presents a significant environmental challenge due to its persistent accumulation and harmful effects on ecosystems. According to the United Nations Environment Program (UNEP), global plastic production in 2024 is estimated to reach approximately 500 million tons. Without effective intervention, most of this plastic is expected to become waste, potentially resulting in billions of tons of accumulated PW by 2060.
View Article and Find Full Text PDFMolecules
January 2025
School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471003, China.
Water electrolysis is a promising path to the industrialization development of hydrogen energy. The exploitation of high-efficiency and inexpensive catalysts become important to the mass use of water decomposition. Ni-based nanomaterials have exhibited great potential for the catalysis of water splitting, which have attracted the attention of researchers around the world.
View Article and Find Full Text PDFSci Rep
January 2025
Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, Elanfoushy, Alexandria, Egypt.
Angew Chem Int Ed Engl
January 2025
Soochow University, FUNSOM, CHINA.
Developing durable IrO2-based electrocatalysts with high oxygen evolution reaction (OER) activity under acidic condition is crucial for proton exchange membrane electrolyzers. While oxygen defects are considered potentially important in OER, their direct relationship with catalytic activity has yet to be established. In this study, we introduced abundant oxygen vacancies through Re doping in 2D IrO2 (Re0.
View Article and Find Full Text PDFChemistry
January 2025
Wuhan University of Technology - Mafangshan Campus: Wuhan University of Technology, School of Material Science and Engineeringl, CHINA.
NiFe layered double hydroxide (LDH) currently are the most efficient catalysts for the oxygen evolution reaction (OER) in alkaline environments. However, the development of high-performance low cost OER electrocatalysts using straightforward strategies remains a significant challenge. In this study, we describe an innovative microbial mineralization-based method for in situ-induced preparation of NiFe LDH nanosheets loaded on nickel foam and demonstrate that this material serves as an efficient oxygen evolution electrocatalyst.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!