Background And Purpose: Doxazosin mesylate (DOX) is an antihypertensive drug that possesses poor water solubility and, hence, poor release properties. Both nanosuspensions and self-nanoemulsifying drug delivery systems (SNEDDS) are becoming nanotechnology techniques for the enhancement of water solubility of different drugs.
Experimental Approach: The study's goal was to identify the best drug delivery system able to enhance the release and antihypertensive effect of DOX by comparing the physical characteristics such as particle size, zeta potential, entrapment efficiency, release rate, and main arterial blood pressure of DOX-loaded nanosuspensions and SNEDDS in liquid and solid form.
Key Results: DOX nanosuspension preparation had a particle size of 385±13 nm, poly-dispersity index of 0.049±3, zeta potential of 50 ± 4 mV and drug release after 20 min (91±0.43 %). Liquid SNEDDS had a droplet size of 224±15 nm, poly-dispersity index of (0.470±0.01), zeta potential of -5±0.10 mV and DR20min of 93±4 %. Solid SEDDS showed particle size of 79±14 nm, poly-dispersity index of 1±0.00, a zeta potential of -18 ±0.26 mv and DR20min of 100 ±2.72 %.
Conclusion: Finally, in terms of the mean arterial blood pressure lowering, solid SNEDDS performed better effect than both liquid SNEDDS and nanosuspension ( >0.05).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10974821 | PMC |
http://dx.doi.org/10.5599/admet.2022 | DOI Listing |
Int J Biol Macromol
January 2025
CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
Microbubble-assisted starch modification (MASM) using different gases (N, CO and air) was employed to assess the effects of hydrodynamic cavitation (HC) on various botanical starches, including potato, wheat, corn and rice. SEM showed that N- and CO- microbubbles created more pronounced holes and cracks on the starch surfaces than air-microbubbles. The hydrodynamic cavitation-assisted microbubble (HCAM) treatment significantly reduced the amorphous and crystalline structures in potato and wheat starches, with less impact observed in corn and rice.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae 50832, Republic of Korea.
Urinary tract infections are among the most common nosocomial infections, with the majority being catheter-associated urinary tract infections (CAUTIs). This study demonstrated that an antimicrobial and antibiofilm urinary catheter containing zinc oxide-carbon nanotubes (ZnO-CNT) can inhibit CAUTIs in patients. ZnO-CNT polymers were synthesized by mixing ZnO and CNT using a high-shear mixer, and the synthesized ZnO-CNT polymers were incorporated into a silicone matrix to produce a ZnO-CNT urinary catheter.
View Article and Find Full Text PDFArch Dermatol Res
January 2025
Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia.
Atopic dermatitis (AD) is a chronic inflammatory skin condition characterized by dry skin, severe itching, redness, and inflammation. Its complex etiology, involving genetic, immunological, and environmental factors, necessitates innovative therapeutic approaches. This study investigates nanostructured lipid carriers (NLCs) formulated with traditional fermented coconut (Cocos nucifera L.
View Article and Find Full Text PDFDrug Dev Ind Pharm
January 2025
Department of Pharmacy, Quaid-i-Azam University, Islamabad 44000, Pakistan.
Objective: The fabrication of furosemide (FSM) with enhanced oral bioavailability and encapsulation was achieved using a nanostructured lipid carriers (NLCs) drug delivery system.: The uniform drug distribution is a barrier due to its low dose. The lipid-based delivery system was selected based on its poor solubility and permeability, limiting its poor partitioning and solubility in water-based polymeric delivery systems.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Polymer and Materials Chemistry, Faculty of Chemistry & Petroleum Sciences, Shahid Beheshti University, P.O. Box 1983969411 Tehran, Iran.
Liposomes are highly beneficial nanocarrier systems due to their biocompatibility, low toxicity, and exceptional inclusiveness, which lead to improved drug bioavailability. For biological applications, accurate control over these nanoparticles' mean size and size distribution is essential. Micromixers facilitate the continuous production of liposomes, enhancing the precision of size regulation and reproducibility.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!