Background: The immune microenvironment and oxidative stress of melanoma show significant heterogeneity, which affects tumor growth, invasion and treatment response. Single-cell and bulk RNA-seq data were used to explore the heterogeneity of the immune microenvironment and oxidative stress of melanoma.
Methods: The R package Seurat facilitated the analysis of the single-cell dataset, while Harmony, another R package, was employed for batch effect correction. Cell types were classified using Uniform Manifold Approximation and Projection (UMAP). The Secreted Signaling algorithm from CellChatDB.human was applied to elucidate cell-to-cell communication patterns within the single-cell data. Consensus clustering analysis for the skin cutaneous melanoma (SKCM) samples was executed with the R package ConsensusClusterPlus. To quantify immune infiltrating cells, we utilized CIBERSORT, ESTIMATE, and TIMERxCell algorithms provided by the R package Immuno-Oncology Biological Research (IOBR). Single nucleotide variant (SNV) analysis was conducted using Maftools, an R package specifically designed for this purpose. Subsequently, the expression levels of and genes were assessed in melanoma tissues compared to adjacent normal tissues. Furthermore, in vitro experiments were conducted to evaluate the proliferation and reactive oxygen species expression in melanoma cells following transfection with siRNA targeting and .
Results: Malignant tumor cell populations were reclassified based on a comprehensive single-cell dataset analysis, which yielded six distinct tumor subsets. The specific marker genes identified for these subgroups were then used to interrogate the Cancer Genome Atlas Skin Cutaneous Melanoma (TCGA-SKCM) cohort, derived from bulk RNA sequencing data, resulting in the delineation of two immune molecular subtypes. Notably, patients within the cluster2 (C2) subtype exhibited a significantly more favorable prognosis compared to those in the cluster1 (C1) subtype. An alignment of immune characteristics was observed between the C2 subtype and unique immune functional tumor cell subsets. Genes differentially expressed across these subtypes were subsequently leveraged to construct a predictive risk model. In vitro investigations further revealed elevated expression levels of and in melanoma tissue samples. Functional assays indicated that modulation of and expression could influence the production of reactive oxygen species (ROS) and the proliferative capacity of melanoma cells.
Conclusion: The constructed six-gene signature can be used as an immune response and an oxidative stress marker to guide the clinical diagnosis and treatment of melanoma.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10979206 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e28244 | DOI Listing |
Histol Histopathol
January 2025
Department of Neurology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang Jiangsu, PR China.
Parkinson's disease (PD) is a limb movement disorder caused by the degeneration of brain neurons and seriously affects the quality of life of the elderly. However, the current drugs are symptomatic treatments that cannot prevent or delay the development of the disease. Targeted therapy for pathogenesis may be the direction of development in the future.
View Article and Find Full Text PDFStroke
January 2025
Wolfson Centre for the Prevention of Stroke and Dementia, Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom. (D.M.K., P.M.R.).
Cardiovascular diseases such as stroke are a major cause of morbidity and mortality for patients with chronic kidney disease (CKD). The underlying mechanisms connecting CKD and cardiovascular disease are yet to be fully elucidated, but inflammation is proposed to play an important role based on genetic association studies, studies of inflammatory biomarkers, and clinical trials of anti-inflammatory drug targets. There are multiple sources of both endogenous and exogenous inflammation in CKD, including increased production and decreased clearance of proinflammatory cytokines, oxidative stress, metabolic acidosis, chronic and recurrent infections, dialysis access, changes in adipose tissue metabolism, and disruptions in intestinal microbiota.
View Article and Find Full Text PDFMediators Inflamm
January 2025
Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China.
This study aims to reveal the potential molecular mechanisms of modified Gegen Qinlian decoction (MGQD) in relieving ulcerative colitis (UC). C57BL/6J mice were used to establish experimental colitis via dextran sodium sulfate (DSS). Body weight, disease activity index (DAI), spleen weight, colon length, and histopathologic features were measured to evaluate the therapeutic effects of MGQD on mice with UC.
View Article and Find Full Text PDFFront Cell Dev Biol
January 2025
Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China.
Increasing evidence has demonstrated that oxidative stress impairs oocyte maturation and embryonic development. Conventionally, antioxidants have been applied systems to improve oocyte maturation and blastocyst rates. Formononetin (FMN) is a flavonoid that has been shown to have various pharmacological effects, including antioxidants.
View Article and Find Full Text PDFRegen Biomater
December 2024
Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China.
Injury caused by excess reactive oxygen species (ROS) may lead to susceptibility to bacterial infection and sustained inflammatory response, which are the major factors impeding diabetic wound healing. By utilizing optimal anti-inflammatory, antioxidant and antibacterial biomaterials for multifunctional wound dressings is critical in clinical applications. In this study, a novel electrospun PLGA/MoS@Pd nanofiber membrane was synthesized by encapsulating antioxidant and near-infrared (NIR) responsive MOS@Pd nanozymes in PLGA nanofibers to form a multifunctional dressing for diabetic wound repair.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!