The effects of the German Fertilizer Application Ordinance (GFO) on crop yield, nitrogen use efficiency and economical performance are highly controversial in science and practice in Germany. This study presents the results of a multi-year field experiment conducted at an experimental farm in southern Germany, in which the effects of different fertilizer systems on crop yield, protein concentration and nitrogen balance were analyzed. At this study site, relatively low N mineralization from the soil N pool was detected. Wheat ( L.) and barley ( L.) showed strong yield declines from annual to multi-annual unfertilized plots, for maize ( L.), this yield decrease was not observed. The recommendations according to GFO meets the fertilizer requirement at the trial site well. A 20% reduction of fertilization compared to GFO resulted in a 5% yield reduction and a decrease in protein concentration of wheat and barley. According to the quadratic N response function, the GFO treatment was slightly below the economic optimum nitrogen rate (N) for wheat, and close to N for winter barley on average over the trial years. For maize, a relatively high yield variability has been observed in the trial period so far. Sensor-based fertilization resulted in very high yields with high N use efficiency (up to 85%). This fertilization system can help to reduce nitrogen input and minimize nitrogen surplus. For wheat and barley, N fertilization and N uptake were well balanced, for maize clearly negative N surpluses were calculated. Despite all the discussion and criticism of GFO, the results of the plot trial show that high yields with high N use efficiency can be achieved with fertilization according to GFO.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10981040 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e28065 | DOI Listing |
PLoS One
January 2025
Joint Global Change Research Institute, Pacific Northwest National Laboratory, Richland, WA, United States of America.
Evolving environmental conditions due to climate change have brought about changes in agriculture, which is required for human life as both a source of food and income. International trade can act as a buffer against potential negative impacts of climate change on crop yields, but recent years have seen breakdowns in global trade, including export bans to improve domestic food security. For countries that rely heavily on imported food, governments may institute policies to protect their agricultural industry from changes in climate-induced crop yield changes and other countries' potential trade restrictions.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Botany, University of Ghana, Legon, Ghana.
Cowpea is deemed as a food security crop due to its ability to produce significant yields under conditions where other staples fail. Its resilience in harsh environments; such as drought, heat and marginal soils; along with its nitrogen-fixing capabilities and suitability as livestock feed make cowpea a preferred choice in many farming systems across sub-Saharan Africa (SSA). Despite its importance, Cowpea yields in farmers' fields remain suboptimal, primarily due to biotic and abiotic factors and the use of either unimproved varieties or improved varieties that are not well-suited to local conditions.
View Article and Find Full Text PDFPLoS One
January 2025
Seed Co, Rattray Arnold Research Station, Harare, Zimbabwe.
Analyses of the genetic distance and composition of inbred lines are a prerequisite for parental selection and to exploit heterosis in plant breeding programs. The study aimed to assess genetic diversity and population structure of a maize germplasm panel comprising 182 founder lines and 866 derived inbred lines using Single Nucleotide Polymorphism (SNP) markers to identify genetically unique lines for hybrid breeding. The founder lines were genotyped with 1201 SNPs, and the derived lines with 1484 SNPs.
View Article and Find Full Text PDFPlant Genome
March 2025
Department of Agronomy, Kansas State University, Manhattan, Kansas, USA.
Barley yellow dwarf (BYD) is one of the most serious viral diseases in cereal crops worldwide. Identification of quantitative trait loci (QTLs) underlining wheat resistance to barley yellow dwarf virus (BYDV) is essential for breeding BYDV-tolerant wheat cultivars. In this study, a recombinant inbred line (RIL) population was developed from the cross between Jagger (PI 593688) and a Jagger mutant (JagMut1095).
View Article and Find Full Text PDFPlant Cell Environ
January 2025
Department of Biotechnology, University of Verona, Verona, Italy.
Calcium (Ca)-dependent signalling plays a well-characterised role in the perception and response mechanisms to environmental stimuli in plant cells. In the context of a constantly changing environment, it is fundamental to understand how crop yield and microalgal biomass productivity are affected by external factors. Ca signalling is known to be important in different physiological processes in microalgae but many of these signal transduction pathways still need to be characterised.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!