A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Spatio-temporal evaluation of air pollution using ground-based and satellite data during COVID-19 in Ecuador. | LitMetric

The concentration of gases in the atmosphere is a topic of growing concern due to its effects on health, ecosystems etc. Its monitoring is commonly carried out through ground stations which offer high precision and temporal resolution. However, in countries with few stations, such as Ecuador, these data fail to adequately describe the spatial variability of pollutant concentrations. Remote sensing data have great potential to solve this complication. This study evaluates the spatiotemporal distribution of nitrogen dioxide (NO) and ozone (O) concentrations in Quito and Cuenca, using data obtained from ground-based and Sentinel-5 Precursor mission sources during the years 2019 and 2020. Moreover, a Linear Regression Model (LRM) was employed to analyze the correlation between ground-based and satellite datasets, revealing positive associations for O (R = 0.83, RMSE = 0.18) and NO (R = 0.83, RMSE = 0.25) in Quito; and O (R = 0.74, RMSE = 0.23) and NO, (R = 0.73, RMSE = 0.23) for Cuenca. The agreement between ground-based and satellite datasets was analyzed by employing the intra-class correlation coefficient (ICC), reflecting good agreement between them (ICC ≥0.57); and using Bland and Altman coefficients, which showed low bias and that more than 95% of the differences are within the limits of agreement. Furthermore, the study investigated the impact of COVID-19 pandemic-related restrictions, such as social distancing and isolation, on atmospheric conditions. This was categorized into three periods for 2019 and 2020: before (from January 1st to March 15th), during (from March 16th to May 17th), and after (from March 18th to December 31st). A 51% decrease in NO concentrations was recorded for Cuenca, while Quito experienced a 14.7% decrease. The tropospheric column decreased by 27.3% in Cuenca and 15.1% in Quito. O showed an increasing trend, with tropospheric concentrations rising by 0.42% and 0.11% for Cuenca and Quito respectively, while the concentration in Cuenca decreased by 14.4%. Quito experienced an increase of 10.5%. Finally, the reduction of chemical species in the atmosphere as a consequence of mobility restrictions is highlighted. This study compared satellite and ground station data for NO and O concentrations. Despite differing units preventing data validation, it verified the Sentinel-5P satellite's effectiveness in anomaly detection. Our research's value lies in its applicability to developing countries, which may lack extensive monitoring networks, demonstrating the potential use of satellite technology in urban planning.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10979269PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e28152DOI Listing

Publication Analysis

Top Keywords

ground-based satellite
12
2019 2020
8
satellite datasets
8
cuenca quito
8
quito experienced
8
data
6
quito
6
cuenca
6
satellite
5
concentrations
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!