Discovery of PLD4 modulators by high-throughput screening and kinetic analysis.

Results Chem

Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States.

Published: January 2024

Phospholipase D3 (PLD3) and D4 (PLD4) are endolysosomal exonucleases of ssDNA and ssRNA that regulate innate immunity. Polymorphisms of these enzymes are correlated with numerous human diseases, including Alzheimer's, rheumatoid arthritis, and systemic sclerosis. Pharmacological modulation of these immunoregulatory proteins may yield novel immunotherapies and adjuvants. A previous study reported a high-throughput screen ( = 17,952) that discovered a PLD3-selective activator and inhibitor, as well as a nonselective inhibitor, but failed to identify selective modulators of PLD4. However, modulators selective for PLD4 are therapeutically pertinent, since recent reports have shown that regulating this protein has direct implications in cancer and autoimmune diseases. Furthermore, the high expression of PLD4 in dendritic and myeloid cells, in comparison to the broader expression of PLD3, presents the opportunity for a cell-targeted immunotherapy. Here, we describe screening of an expended diversity library ( = 45,760) with an improved platform and report the discovery of one inhibitor and three activators selective for PLD4. Furthermore, kinetic modeling and structural analysis suggest mechanistic differences in the modulation of these hits. These findings further establish the utility of this screening platform and provide a set of chemical scaffolds to guide future small-molecule development for this novel immunoregulator target.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10977906PMC
http://dx.doi.org/10.1016/j.rechem.2024.101349DOI Listing

Publication Analysis

Top Keywords

pld4 modulators
8
selective pld4
8
pld4
5
discovery pld4
4
modulators high-throughput
4
high-throughput screening
4
screening kinetic
4
kinetic analysis
4
analysis phospholipase
4
phospholipase pld3
4

Similar Publications

Article Synopsis
  • The study investigates the role of the phospholipase D family member 4 (PLD4) gene in promoting remyelination in a mouse model of multiple sclerosis induced by cuprizone (CPZ).
  • Researchers used various assays to assess remyelination and found that PLD4 is upregulated during both demyelination and remyelination phases, impacting microglial activity.
  • The results suggest that PLD4 regulates microglial phagocytosis and remyelination through the AKT signaling pathway, highlighting its potential as a target for MS treatment.
View Article and Find Full Text PDF

Discovery of PLD4 modulators by high-throughput screening and kinetic analysis.

Results Chem

January 2024

Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States.

Phospholipase D3 (PLD3) and D4 (PLD4) are endolysosomal exonucleases of ssDNA and ssRNA that regulate innate immunity. Polymorphisms of these enzymes are correlated with numerous human diseases, including Alzheimer's, rheumatoid arthritis, and systemic sclerosis. Pharmacological modulation of these immunoregulatory proteins may yield novel immunotherapies and adjuvants.

View Article and Find Full Text PDF

Modulators of immunoregulatory exonucleases PLD3 and PLD4 identified by high-throughput screen.

Bioorg Med Chem Lett

October 2021

Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, United States. Electronic address:

PLD3 and PLD4 have recently been revealed to be endosomal exonucleases that regulate the innate immune response by digesting the ligands of nucleic acid sensors. These enzymes can suppress RNA and DNA innate immune sensors like toll-like receptor 9, and PLD4-deficent mice exhibit inflammatory disease. Targeting these immunoregulatory enzymes presents an opportunity to indirectly regulate innate immune nucleic acid sensors that could yield immunotherapies, adjuvants, and nucleic acid drug stabilizers.

View Article and Find Full Text PDF

Phospholipase D4 (PLD4), a single-pass transmembrane glycoprotein, is among the most highly upregulated genes in murine kidneys subjected to chronic progressive fibrosis, but the function of PLD4 in this process is unknown. Here, we found PLD4 to be overexpressed in the proximal and distal tubular epithelial cells of murine and human kidneys after fibrosis. Genetic silencing of PLD4, either globally or conditionally in proximal tubular epithelial cells, protected mice from the development of fibrosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!