Review on Lysosomal Metal Ion Detection Using Fluorescent Probes.

ACS Omega

Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh India.

Published: March 2024

Metal ions are indispensable and play an important role in living systems. Metal ions coordinated to metalloenzymes pocket activate the bound substrate and labile metal ions maintaining the ionic balance. The amount of metal ions present in various subcellular compartments of the cells is highly regulated for maintaining cellular homeostasis. An imbalance in the metal ion concentration is related to several diseases and results in serious pathological conditions. Mostly the internalized metal ions are processed in the lysosomal compartment of the cell. A delicate regulation of metal ions in the lysosomal compartment can modulate the lysosomal pH and inhibit hydrolytic enzymes, which ultimately causes lysosomal storage disorders. In the past decade, the understanding and regulation of lysosomal metal ions based on fluorometric methods have gained significant attention. In this review, we have comprehensively summarized the development of various fluorescent reporters over the past five years for a selective and sensitive estimation of lysosomal metal ion concentration. We believe this consolidated and timely review will help researchers working in the areas associated with lysosomal metal ions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10975597PMC
http://dx.doi.org/10.1021/acsomega.3c08606DOI Listing

Publication Analysis

Top Keywords

metal ions
32
lysosomal metal
16
metal ion
12
metal
11
ions
8
ion concentration
8
lysosomal compartment
8
lysosomal
7
review lysosomal
4
ion detection
4

Similar Publications

Metal ions are significant ligands that bind to proteins and play crucial roles in cell metabolism, material transport, and signal transduction. Predicting the protein-metal ion ligand binding residues (PMILBRs) accurately is a challenging task in theoretical calculations. In this study, the authors employed fused amino acids and their derived information as feature parameters to predict PMILBRs using three classical machine learning algorithms, yielding favourable prediction results.

View Article and Find Full Text PDF

Natural aging is associated with mild memory loss and cognitive decline, and age is the greatest risk factor for neurodegenerative diseases, such as Alzheimer's disease. There is substantial evidence that oxidative stress is a major contributor to both natural aging and neurodegenerative disease, and coincidently, levels of redox active metals such as Fe and Cu are known to be elevated later in life. Recently, a pronounced age-related increase in Cu content has been reported to occur in mice and rats around a vital regulatory brain region, the subventricular zone of lateral ventricles.

View Article and Find Full Text PDF

Severe environmental contamination can result from high concentrations of iron ions, which can have a detrimental impact on human health and well-being. Consequently, it is imperative to develop novel materials that can address environmental issues. Metal-organic frameworks (MOFs) possess unique properties that render them efficient fluorescent probes for the rapid and precise detection of these pollutants.

View Article and Find Full Text PDF

Dual-Induced Directed Deposition Mechanism Based on Anionic Surfactants Enables Long Cycle Aqueous Zinc Ion Batteries.

Small Methods

January 2025

School of Physical Science and Technology, Center for Energy Conversion Materials & Physics (CECMP), Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou, 215006, China.

Aqueous zinc-ion battery has low cost, and environmental friendliness, emerging as a promising candidate for next-generation battery systems. However, it still suffers from a limited cycling life, caused by dendritic Zn growth and severe side reactions. Recent research highlights that the Zn (002) crystal plane exhibits superior anti-corrosive properties and a horizontal growth pattern.

View Article and Find Full Text PDF

Fabrication of Dual-Functional MXene@NiCoS Composites with Enhanced Nonlinear Optical and Electrochemical Properties.

Small

January 2025

Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China.

The design and synthesis of multifunctional nanomaterials have attracted considerable attention for expanding the range of practical applications. Herein, a metal-organic framework (MOFs)-derived NiCoS attached to MXene is rationally designed and constructed for an optical limiter and supercapacitor. The MOF-derived NiCoS enhances the tendency of hydroxyl groups on the MXene surface to attract metal ions, resulting in the formation of sulfur vacancies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!