A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effects of Sulfate Ions on Crude Oil Adsorption/Desorption on Carbonate Rocks: Experimental and Molecular Simulations. | LitMetric

In the background of the strong oil wettability and low production by water flooding in carbonate reservoirs, low-salinity water containing sulfate ions can significantly change the surface wettability of carbonate rocks and thus increase the sweeping area; however, the absorption and desorption mechanisms of the oil film in the carbonate rock surface remain unclear. This paper analyzed the wettability alternation of carbonate rocks' surface in pure water and sodium sulfate solution. At the same time, MD (Materials Studio) software was used to simulate the formation process of the oil film and the effect of sulfate ions on the desorption of the oil film on the surface of carbonate rocks. The experimental results showed that sodium sulfate solution could accelerate the rate from oil-wet to water-wet and the final contact angle (49°) was smaller than that in pure water. The simulation results showed that dodecane molecules moved to the surface of calcite to form a double layer of the oil film and that the oil film near the calcite surface had a high-density stable structure under the van der Waals and electrostatic action. The hydrating sulfate ions above the oil film broke through the double oil film to form a water channel mainly under the action of electrostatic force and a hydrogen bond and then adsorbed on the calcite surface. A large number of water molecules moved down the water channel based on a strong hydrogen bonding force and crowded out the oil molecules on the surface of the calcite, resulting in the oil film detachment. This work aims to explain the interaction of oil molecules, water molecules, and SO ions at the molecular scale and guide the practical application of low-salinity water flooding in carbonate reservoirs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10975590PMC
http://dx.doi.org/10.1021/acsomega.3c09861DOI Listing

Publication Analysis

Top Keywords

oil film
32
sulfate ions
16
oil
12
carbonate rocks
12
water
9
rocks experimental
8
water flooding
8
flooding carbonate
8
carbonate reservoirs
8
low-salinity water
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!