The mechanisms behind Concanavalin A (ConA) circular permutation have been under investigation since 1985. Although a vast amount of information is available about this lectin and its applications, the exact purpose of its processing remains unclear. To shed light on this, this study employed computer simulations to compare the unprocessed ProConA with the mature ConA. This approach aimed to reveal the importance of the post-translational modifications, especially how they affect the lectin stability and carbohydrate-binding properties. To achieve these goals, we conducted 200 ns molecular dynamics simulations and trajectory analyses on the monomeric forms of ProConA and ConA (both unbound and in complex with D-mannose and the GlcNAc2Man9 N-glycan), as well as on their oligomeric forms. Our findings reveal significant stability differences between ProConA and ConA at both the monomeric and tetrameric levels, with ProConA exhibiting consistently lower stability parameters compared to ConA. In terms of carbohydrate binding properties, however, both lectins showed remarkable similarities in their interaction profiles, contact numbers, and binding free energies with D-mannose and the high-mannose -glycan. Overall, our results suggest that the processing of ProConA significantly enhances the stability of the mature lectin, especially in maintaining the tetrameric oligomer, without substantially affecting its carbohydrate-binding properties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10979261 | PMC |
http://dx.doi.org/10.1016/j.crstbi.2024.100140 | DOI Listing |
Biomol NMR Assign
January 2025
High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China.
PhoCl is a photocleavable protein engineered from a green-to-red photoconvertible fluorescent protein by circular permutation, and has been used in various optogenetic applications including precise control of protein localization and activity in cells. Upon violet light illumination, PhoCl undergoes a β-elimination reaction to be cleaved at the chromophore, resulting in spontaneous dissociation into a large empty barrel and a small C-terminal peptide. However, the structural determinants and the mechanism of the PhoCl photocleavage remain elusive, hindering the further development of more robust photocleavable optogenetic tools.
View Article and Find Full Text PDFStructure
December 2024
Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark. Electronic address:
Gene variants resulting in insertions or deletions of amino acid residues (indels) have important consequences for evolution and are often linked to disease, yet, compared to missense variants, the effects of indels are poorly understood and predicted. We developed a sensitive protein folding sensor based on the complementation of uracil auxotrophy in yeast by circular permutated orotate phosphoribosyltransferase (CPOP). The sensor reports on the folding of disease-linked missense variants and de-novo-designed proteins.
View Article and Find Full Text PDFPlants (Basel)
November 2024
Council for Agricultural Research and Economics, Research Center for Agriculture and Environment, Via Celso Ulpiani, 5, 70125 Bari, Italy.
Climate change and water scarcity bring significant challenges to agricultural systems in the Mediterranean region. Novel methods are required to rapidly monitor the water stress of the crop to avoid qualitative losses of agricultural products. This study aimed to predict the stem water potential of cotton ( L.
View Article and Find Full Text PDFNat Biomed Eng
December 2024
MRC Laboratory of Molecular Biology, Cambridge, UK.
Circular RNA (circRNA) is a candidate for next-generation messenger RNA therapeutics owing to its remarkable stability. Here we describe trans-splicing-based methods for the synthesis of circRNAs over 8,000 nucleotides. The methods are independent of bacterial sequences, outperform the permuted intron-exon method and allow for the incorporation of RNA modifications.
View Article and Find Full Text PDFMethods
December 2024
Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA; Center for RNA and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA; Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA. Electronic address:
Small self-cleaving ribozymes are catalytic RNAs that cleave their phosphodiester backbone rapidly and site-specifically, without the assistance of proteins. Their catalytic properties make them ideal targets for applications in RNA pharmaceuticals and bioengineering. Consequently, computational pipelines that predict or design thousands of self-cleaving ribozyme candidates have been developed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!