Computational insights into the circular permutation roles on ConA binding and structural stability.

Curr Res Struct Biol

Laboratory of Biologically Active Molecules, Department of Biochemistry and Molecular Biology, Federal University of Ceara, 60.440-970, Fortaleza, CE, Brazil.

Published: March 2024

The mechanisms behind Concanavalin A (ConA) circular permutation have been under investigation since 1985. Although a vast amount of information is available about this lectin and its applications, the exact purpose of its processing remains unclear. To shed light on this, this study employed computer simulations to compare the unprocessed ProConA with the mature ConA. This approach aimed to reveal the importance of the post-translational modifications, especially how they affect the lectin stability and carbohydrate-binding properties. To achieve these goals, we conducted 200 ns molecular dynamics simulations and trajectory analyses on the monomeric forms of ProConA and ConA (both unbound and in complex with D-mannose and the GlcNAc2Man9 N-glycan), as well as on their oligomeric forms. Our findings reveal significant stability differences between ProConA and ConA at both the monomeric and tetrameric levels, with ProConA exhibiting consistently lower stability parameters compared to ConA. In terms of carbohydrate binding properties, however, both lectins showed remarkable similarities in their interaction profiles, contact numbers, and binding free energies with D-mannose and the high-mannose -glycan. Overall, our results suggest that the processing of ProConA significantly enhances the stability of the mature lectin, especially in maintaining the tetrameric oligomer, without substantially affecting its carbohydrate-binding properties.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10979261PMC
http://dx.doi.org/10.1016/j.crstbi.2024.100140DOI Listing

Publication Analysis

Top Keywords

circular permutation
8
carbohydrate-binding properties
8
procona cona
8
cona
6
stability
5
procona
5
computational insights
4
insights circular
4
permutation roles
4
roles cona
4

Similar Publications

Backbone resonance assignments of PhoCl, a photocleavable protein.

Biomol NMR Assign

January 2025

High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China.

PhoCl is a photocleavable protein engineered from a green-to-red photoconvertible fluorescent protein by circular permutation, and has been used in various optogenetic applications including precise control of protein localization and activity in cells. Upon violet light illumination, PhoCl undergoes a β-elimination reaction to be cleaved at the chromophore, resulting in spontaneous dissociation into a large empty barrel and a small C-terminal peptide. However, the structural determinants and the mechanism of the PhoCl photocleavage remain elusive, hindering the further development of more robust photocleavable optogenetic tools.

View Article and Find Full Text PDF

Gene variants resulting in insertions or deletions of amino acid residues (indels) have important consequences for evolution and are often linked to disease, yet, compared to missense variants, the effects of indels are poorly understood and predicted. We developed a sensitive protein folding sensor based on the complementation of uracil auxotrophy in yeast by circular permutated orotate phosphoribosyltransferase (CPOP). The sensor reports on the folding of disease-linked missense variants and de-novo-designed proteins.

View Article and Find Full Text PDF

Climate change and water scarcity bring significant challenges to agricultural systems in the Mediterranean region. Novel methods are required to rapidly monitor the water stress of the crop to avoid qualitative losses of agricultural products. This study aimed to predict the stem water potential of cotton ( L.

View Article and Find Full Text PDF

Circular RNA (circRNA) is a candidate for next-generation messenger RNA therapeutics owing to its remarkable stability. Here we describe trans-splicing-based methods for the synthesis of circRNAs over 8,000 nucleotides. The methods are independent of bacterial sequences, outperform the permuted intron-exon method and allow for the incorporation of RNA modifications.

View Article and Find Full Text PDF

CHiTA: A scarless high-throughput pipeline for characterization of ribozymes.

Methods

December 2024

Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA; Center for RNA and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA; Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA. Electronic address:

Small self-cleaving ribozymes are catalytic RNAs that cleave their phosphodiester backbone rapidly and site-specifically, without the assistance of proteins. Their catalytic properties make them ideal targets for applications in RNA pharmaceuticals and bioengineering. Consequently, computational pipelines that predict or design thousands of self-cleaving ribozyme candidates have been developed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!