Hormonal Control of Blood Viscosity.

Cureus

Cardiac/Thoracic/Vascular Surgery, Jacqmar, Inc., Minneapolis, USA.

Published: February 2024

The hemodynamic milieu differs throughout the vascular tree because of varying vascular geometry and blood velocities. Accordingly, the risk of turbulence, which is dictated by the Reynolds and Dean numbers, also varies. Relatively high blood viscosity is needed to prevent turbulence in the left ventricle and aorta, where high-velocity blood changes direction several times. Low blood viscosity is needed in the capillaries, where erythrocytes pass through vessels with a diameter smaller than their own. In addition, higher blood viscosity is necessary when the cardiac output and peak blood velocity increase as a part of a sympathetic response or anemia, which occurs following significant hemorrhage. Blood viscosity, as reflected in systemic vascular resistance and vascular wall shear stress, is sensed, respectively, by cardiomyocyte stretching in the left ventricle and mechanoreceptors for wall shear stress in the carotid sinus. By controlling blood volume and red blood cell mass, the renin-aldosterone-angiotensin system and the systemic vascular resistance response control the hematocrit, the strongest intrinsic determinant of blood viscosity. These responses provide gross control of blood viscosity. Fine-tuning of blood viscosity in transient conditions is provided by hormonal control of erythrocyte deformability. The short half-life of some of these hormones limits their activity to specific vascular beds. Hormones that modulate blood viscosity include erythropoietin, angiotensin II, brain natriuretic factor, epinephrine, prostacyclin E2, antidiuretic hormone, and nitric oxide.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10981512PMC
http://dx.doi.org/10.7759/cureus.55237DOI Listing

Publication Analysis

Top Keywords

blood viscosity
36
blood
14
viscosity
9
hormonal control
8
control blood
8
viscosity needed
8
left ventricle
8
systemic vascular
8
vascular resistance
8
wall shear
8

Similar Publications

This study employed large eddy simulation (LES) with the wall-adapting local eddy-viscosity (WALE) model to investigate transitional flow characteristics in an idealized model of a healthy thoracic aorta. The OpenFOAM solver pimpleFoam was used to simulate blood flow as an incompressible Newtonian fluid, with the aortic walls treated as rigid boundaries. Simulations were conducted for 30 cardiac cycles and ensemble averaging was employed to ensure statistically reliable results.

View Article and Find Full Text PDF

This study aimed to investigate the effects of laminarin (LA) and ferulic acid (FA) on the gelatinization, rheological properties, freeze-thaw stability, and digestibility of cassava starch (CS). The results indicated that LA increased the peak viscosity, trough viscosity, final viscosity, storage modulus, and loss modulus of CS, while decreasing the breakdown viscosity. Conversely, FA exerted opposite effects.

View Article and Find Full Text PDF

Stroke is the second leading cause of death worldwide, according to the latest report by the World Health Organization (WHO). Intracerebral hemorrhage comprises 20-25% of the stroke in the young, with incidence rates of three to six in 100,000 people per year. One of the most common and important causes of hemorrhagic stroke in the general population is hypertension.

View Article and Find Full Text PDF

Purpose: Red blood cells (RBCs) senescence and blood rheology during ultra-endurance running events appear to be impacted differently depending on the race distance. The physiological mechanisms underlying these differences are poorly understood.

Methods: We investigated the effects of three different ultra-trail running races performed in La Reunion Island (Mascareignes, "the 70 km", 70 km/4,000 m D+; Trail Du Bourbon, "the 100 km", 100 km/6,090 m D+; Diagonale des Fous, "the 170 km", 170 km/10,500 m D+) on RBC oxidative stress, RBC senescence and blood rheology in 66 finishers (18 "70 km", 24 "100 km", 24 "170 km").

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!