A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Experimental Demonstration of Reservoir Computing with Self-Assembled Percolating Networks of Nanoparticles. | LitMetric

Experimental Demonstration of Reservoir Computing with Self-Assembled Percolating Networks of Nanoparticles.

Adv Mater

The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Physical and Chemical Sciences, Te Kura Matū, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand.

Published: July 2024

The complex self-assembled network of neurons and synapses that comprises the biological brain enables natural information processing with remarkable efficiency. Percolating networks of nanoparticles (PNNs) are complex self-assembled nanoscale systems that have been shown to possess many promising brain-like attributes and which are therefore appealing systems for neuromorphic computation. Here experiments are performed that show that PNNs can be utilized as physical reservoirs within a nanoelectronic reservoir computing framework and demonstrate successful computation for several benchmark tasks (chaotic time series prediction, nonlinear transformation, and memory capacity). For each task, relevant literature results are compiled and it is shown that the performance of the PNNs compares favorably to that previously reported from nanoelectronic reservoirs. It is then demonstrated experimentally that PNNs can be used for spoken digit recognition with state-of-the-art accuracy. Finally, a parallel reservoir architecture is emulated, which increases the dimensionality and richness of the reservoir outputs and results in further improvements in performance across all tasks.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202402319DOI Listing

Publication Analysis

Top Keywords

reservoir computing
8
percolating networks
8
networks nanoparticles
8
complex self-assembled
8
experimental demonstration
4
reservoir
4
demonstration reservoir
4
computing self-assembled
4
self-assembled percolating
4
nanoparticles complex
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!