Most ovarian carcinoma (OvCa) patients present with advanced disease at the time of diagnosis. Malignant, metastatic OvCa is invasive and has poor prognosis, exposing the need for improved therapeutic targeting. High CD47 (OvCa) and SIRPα (macrophage) expression has been linked to decreased survival, making this interaction a significant target for therapeutic discovery. Even so, previous attempts have fallen short, limited by CD47 antibody specificity and efficacy. Macrophages are an important component of the OvCa tumor microenvironment and are manipulated to aid in cancer progression via CD47-SIRPα signaling. Thus, we have leveraged lipid-based nanoparticles (LNPs) to design a therapy uniquely situated to home to phagocytic macrophages expressing the SIRPα protein in metastatic OvCa. CD47-SIRPα presence was evaluated in patient histological sections using immunohistochemistry. 3D tumor spheroids generated on a hanging drop array with OVCAR3 high-grade serous OvCa and THP-1-derived macrophages created a representative model of cellular interactions involved in metastatic OvCa. Microfluidic techniques were employed to generate LNPs encapsulating SIRPα siRNA (siSIRPα) to affect the CD47-SIRPα signaling between the OvCa and macrophages. siSIRPα LNPs were characterized for optimal size, charge, and encapsulation efficiency. Uptake of the siSIRPα LNPs by macrophages was assessed by Incucyte. Following 48 h of 25 nM siSIRPα treatment, OvCa/macrophage heterospheroids were evaluated for SIRPα knockdown, platinum chemoresistance, and invasiveness. OvCa patient tumors and heterospheroids expressed CD47 and SIRPα. Macrophages in OvCa spheroids increased carboplatin resistance and invasion, indicating a more malignant phenotype. We observed successful LNP uptake by macrophages causing significant reduction in gene and protein expressions and subsequent reversal of pro-tumoral alternative activation. Disrupting CD47-SIRPα interactions resulted in sensitizing OvCa/macrophage heterospheroids to platinum chemotherapy and reversal of cellular invasion outside of heterospheroids. Ultimately, our results strongly indicate the potential of using LNP-based nanoimmunotherapy to reduce malignant progression of ovarian cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11653402 | PMC |
http://dx.doi.org/10.1021/acsabm.4c00076 | DOI Listing |
Cell Commun Signal
December 2024
Departmentof Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
Background: Peritoneal dissemination of ovarian cancer (OvCa) can be largely attributed to the formation of a metastatic microenvironment driven by tumoral exosomes. Here, we aimed to elucidate the mechanisms through which exosomal annexin A2 (ANXA2) derived from OvCa cells induces an HPMC phenotypic shift in favour of peritoneal metastasis.
Methods: Immunohistochemistry and orthotopic and intraperitoneal OvCa xenograft mouse models were used to clarify the relationship between tumour ANXA2 expression and peritoneal metastasis.
J Exp Med
December 2024
Immunology, Microenvironment and Metastasis Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA.
Patients with metastatic ovarian cancer (OvCa) have a 5-year survival rate of <30% due to the persisting dissemination of chemoresistant cells in the peritoneal fluid and the immunosuppressive microenvironment in the peritoneal cavity. Here, we report that intraperitoneal administration of β-glucan and IFNγ (BI) induced robust tumor regression in clinically relevant models of metastatic OvCa. BI induced tumor regression by controlling fluid tumor burden and activating localized antitumor immunity.
View Article and Find Full Text PDFSci Rep
October 2024
Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan.
Ovarian cancer (OvCa) is one of the most lethal gynecological malignancies, and most patients are diagnosed at advanced stage with peritoneal dissemination. Although age at diagnosis is considered an independent prognostic factor, its impact on peritoneal recurrence after combined cytoreductive surgery and chemotherapy is not clear. The objective of this study was to investigate the impact of aging on peritoneal recurrence from stealth dissemination and gain insight of the pathophysiology of OvCa in elderly patients.
View Article and Find Full Text PDFMed Sci Monit
July 2024
Department of Gynecologic Oncology, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, China.
BACKGROUND Tumor-infiltrating immune cells (TIICs) are implicated in the survival of ovarian cancer (OVCA) patients, but their prognostic significance in advanced or metastatic OVCA patients treated with neoadjuvant chemotherapy (NCAT) has not been well documented, particularly in the Chinese population. MATERIAL AND METHODS A total of 31 advanced or metastatic OVCA patients who underwent NACT were included. The density and positive rate of tumor-infiltrating immune cells (TIICs) within cancer cell nests and in cancer stroma were explored.
View Article and Find Full Text PDFbioRxiv
June 2024
Immunology, Microenvironment & Metastasis Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA.
Patients with metastatic ovarian cancer (OvCa) have a 5-year survival rate of less than 30% due to persisting dissemination of chemoresistant cells in the peritoneal fluid and the immunosuppressive microenvironment in the peritoneal cavity. Here, we report that intraperitoneal administration of β-glucan and IFNγ (BI) induced robust tumor regression in clinically relevant models of metastatic OvCa. BI induced tumor regression by controlling fluid tumor burden and activating localized antitumor immunity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!