Acetaminophen (AC) can inhibit the synthesis of prostaglandins in the body, and has antipyretic and analgesic effects. In this paper, a two-step microwave impregnation method was used to prepare anthraquinone (AQ)-doped carbon composite, which were applied to the surface modification of glassy carbon electrodes (GCE) for the determination of acetaminophen (AC) using differential pulse voltammetry (DPV). The composites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman and Fourier infrared spectroscopy (FT-IR). The results showed that anthraquinone was successfully modified on the surface of activated carbon. The peak current of AC increased with its concentration in the range of 0.1 μM to 700 μM (R = 0.998) and a detection limit of 0.05 μM was obtained with 20%AQ doped carbon electrochemical sensor (20%AQ-C/GCE). Electrochemical Impedance Spectroscopy (EIS) test results indicated that the charge transfer resistance (R) of 20%AQ-C/GCE is only the one-fourth of that of bare GCE. The proposed 20%AQ-C/GCE sensor has good stability, reproducibility and selectivity for the detection of AC. The sensor is also suitable for the detection of real samples, indicating its good practicality.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s44211-024-00537-3 | DOI Listing |
Int J Biol Macromol
January 2025
College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China; Engineering Research Center of Oilfield Chemistry, Ministry of Education, Chengdu 610500, PR China; Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Chengdu 610500, PR China. Electronic address:
In this study, polyamide/silica/sodium alginate (SA) composite (PA-Si-SA) was successfully prepared in one-step benzoxazine-isocyanide chemistry (BIC)/sol-gel process at room temperature. The chemical structure and fundamental properties of PA-Si-SA were characterized by FT-IR, solid-state C NMR, XPS, XRD, SEM, BET and TG, etc. The presence of anionic SA and diverse N, O-containing functional segments (amide, tertiary amine, alkyl/phenol -OH, Si-O-Si, and COO) in PA-Si-SA endows it synergistic complexation capability toward Pb and Cd.
View Article and Find Full Text PDFTalanta
January 2025
The School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, PR China.
Epinephrine (Ep) is an important neurotransmitter, which plays an important role in the nervous system and glycogen metabolism of living organisms. Hence, a novel NCQDs/FeCoFe-PBA composite with FeCoFe-Prussian blue analogues (PBA) as the core and nitrogen-doped carbon quantum dots (NCQDs) as the shell was constructed by a one-pot hydrothermal method, and it was used for the efficient detection of Ep. As a good electroactive material, NCQDs in the composite not only improved the weak conductivity of FeCoFe-PBA, but also limited the self-aggregation of FeCoFe-PBA, and formed a uniform shell on FeCoFe-PBA.
View Article and Find Full Text PDFTalanta
December 2024
NanoBiosensors and Biodevices Lab, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal, 721302, India. Electronic address:
This work presents a robust strategy for quantifying overlapping electrochemical signatures originating from complex mixtures and real human plasma samples using nickel-based electrochemical sensors and machine learning (ML). This strategy enables the detection of a panel of analytes without being limited by the selectivity of the transducer material and leaving accommodation of interference analysis to ML models. Here, we fabricated a non-enzymatic electrochemical sensor for L-lactic acid detection in complex mixtures and human plasma samples using nickel oxide (NiO) nanoparticle-modified glassy carbon electrodes (GCE).
View Article and Find Full Text PDFTalanta
January 2025
Department of Chemistry, State University of Ponta Grossa, Ponta Grossa, CEP 84030-900, PR, Brazil. Electronic address:
The challenge of increasing food production while maintaining environmental sustainability can be addressed by using biofertilizers such as Azospirillum, which can enhance plant growth and colonize more than 100 plant species. The success of this biotechnology depends on the amount of plant growth-promoting bacteria associated with the plant during crop development. However, monitoring bacterial population dynamics after inoculation requires time-consuming, laborious, and costly procedures.
View Article and Find Full Text PDFSci Total Environ
January 2025
Yunnan Key Laboratory of Internal Combustion Engine, Kunming University of Science and Technology, Kunming 650500, China.
Ammonia is a highly promising carbon-neutral fuel. The use of ammonia as a fuel for internal combustion engines can reduce fossil energy consumption and greenhouse gas emissions. However, the high ignition energy required for ammonia and the slow flame propagation rate result in low combustion efficiency when ammonia is used directly in internal combustion engines.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!