Predicting Tibia-Fibula Geometry and Density From Anatomical Landmarks Via Statistical Appearance Model: Influence of Errors on Finite Element-Calculated Bone Strain.

J Biomech Eng

Department of Biomedical Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada; Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada; McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada.

Published: September 2024

State-of-the-art participant-specific finite element models require advanced medical imaging to quantify bone geometry and density distribution; access to and cost of imaging is prohibitive to the use of this approach. Statistical appearance models may enable estimation of participants' geometry and density in the absence of medical imaging. The purpose of this study was to: (1) quantify errors associated with predicting tibia-fibula geometry and density distribution from skin-mounted landmarks using a statistical appearance model and (2) quantify how those errors propagate to finite element-calculated bone strain. Participant-informed models of the tibia and fibula were generated for thirty participants from height and sex and from twelve skin-mounted landmarks using a statistical appearance model. Participant-specific running loads, calculated using gait data and a musculoskeletal model, were applied to participant-informed and CT-based models to predict bone strain using the finite element method. Participant-informed meshes illustrated median geometry and density distribution errors of 4.39-5.17 mm and 0.116-0.142 g/cm3, respectively, resulting in large errors in strain distribution (median RMSE = 476-492 με), peak strain (limits of agreement =±27-34%), and strained volume (limits of agreement =±104-202%). These findings indicate that neither skin-mounted landmark nor height and sex-based predictions could adequately approximate CT-derived participant-specific geometry, density distribution, or finite element-predicted bone strain and therefore should not be used for analyses comparing between groups or individuals.

Download full-text PDF

Source
http://dx.doi.org/10.1115/1.4065216DOI Listing

Publication Analysis

Top Keywords

geometry density
24
statistical appearance
16
bone strain
16
density distribution
16
landmarks statistical
12
appearance model
12
predicting tibia-fibula
8
tibia-fibula geometry
8
finite element-calculated
8
element-calculated bone
8

Similar Publications

Photoelasticity of crystals with the scheelite structure: quantum mechanical calculations.

Acta Crystallogr B Struct Sci Cryst Eng Mater

February 2025

Faculty of Electrical Engineering, Czestochowa University of Technology, 17 Al. Armii Krajowej, Częstochowa, PL-42200, Poland.

We report a complete set of elastic, piezooptic and photoelastic tensor constants of scheelite crystals CaMoO, BaMoO, BaWO and PbWO determined by density functional theory (DFT) calculations using the quantum chemical software package CRYSTAL17. The modulation parameter, i.e.

View Article and Find Full Text PDF

This study considers Timoshenko beam theory and the isogeometric analysis method to investigate the free vibration and buckling of axially functionally graded (AFG) tapered beams. The governing equations are obtained from the kinematic assumptions of Timoshenko beam theory and Hamilton's principle. The isogeometric analysis approach is implemented to solve the motion equations.

View Article and Find Full Text PDF

We extend our previous work on the energetics and mechanisms of fragmentation in the mass spectrometry of triacylglycerols (TAGs). Previously, we proposed viable mechanisms for the collision-induced fragmentation of lithiated tripropionylglycerol using triple-quadrupole mass spectrometry. In this work, we used a QqLIT mass spectrometer to study both double- and triple-stage spectra from a range of TAGs having acid chains of types AAA (identical acid chains), AAB, ABA, and ABC, with chain lengths of 6-18 carbon atoms; we also studied some TAGs having a single double bond in the Δ-9 position.

View Article and Find Full Text PDF

We here simulate in the gas phase the population dynamics of guanine/cytosine (GC) and cytosine/guanine (CG) stacked dimers in B-DNA and A-DNA arrangement, following excitation in the lowest-energy band, and considering the four lowest-energy ππ* bright excited states, the three lowest-energy π* states, and the G → C charge-transfer (CT) state. We resort to a generalized Linear Vibronic Coupling (LVC) model parametrized with time-dependent density functional theory (TD-DFT) computations, exploiting a fragment-based diabatization and we run nonadiabatic quantum dynamical simulations with the multilayer version of the Multiconfigurational Time-Dependent Hartree (ML-MCTDH) approach. G → C CT results in a major decay process for GC in B-DNA but less in A-DNA arrangement, where also the population transfer to the lowest-energy excited state localized on C is an important intermonomer process.

View Article and Find Full Text PDF

Four aliphatic amino acids-α-aminobutyric acid (AABA), β-aminobutyric acid (BABA), α-aminoisobutyric acid (AAIBA) and β-aminoisobutyric acid (BAIBA) were investigated in water as a solvent by two quantum chemical methods. B3LYP hybrid version of DFT was used for geometry optimization and a full vibrational analysis of neutral molecules, their cations and anions in the canonical and zwitterionic forms (6 forms for each species). Ab initio DLPNO-CCSD(T) method was applied in the geometry pre-optimized by B3LYP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!