Engineering systems, characterized by their high technical complexity and societal intricacies, require a strategic design approach to navigate multifaceted challenges. Understanding the circumstances that affect strategic action in these systems is crucial for managing complex real-world challenges. These challenges go beyond localized coordination issues and encompass intricate dynamics, requiring a deep understanding of the underlying structures impacting strategic behaviors, the interactions between subsystems, and the conflicting needs and expectations of diverse actors. Traditional optimization and game-theoretic approaches to guide individual and collective decisions need adaptation to capture the complexities of these design ecosystems, particularly in the face of increasing numbers of decision-makers and various interconnections between them. This paper presents a framework for studying strategic decision-making processes in collective systems. It tackles the combinatorial complexity and interdependencies inherent in large-scale systems by representing strategic decision-making processes as binary normal-form games, then dissects and reinterprets them in terms of multiple compact games characterized by two real-numbered structural factors and classifies them across four strategy dynamical domains associated with different stability conditions. We provide a mathematical characterization and visual representation of emergent strategy dynamics in games with three or more actors intended to facilitate its implementation by researchers and practitioners and elicit new perspectives on design and management for optimizing systems-of-systems performance. We conclude this paper with a discussion of the opportunities and challenges of adopting this framework within and beyond the context of engineering systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10984537 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0301394 | PLOS |
BMC Health Serv Res
January 2025
Faculty of Health Sciences, University of Primorska, Polje 42, 6310, Izola, Slovenia.
Background: Midwifery faces global workforce shortages exacerbated by the pandemic. Understanding job satisfaction drivers is vital for creating supportive work environments. This study explored the multifaceted nature of job satisfaction of midwives in the post-COVID era in order to understand the elements that contribute and the ones that don't to midwives' sense of fulfilment and engagement at work.
View Article and Find Full Text PDFBMC Cancer
January 2025
Jiangxi Provincial Key Laboratory of Child Development and Genetics, Jiangxi Provincial Children's Hospital, No. 122 of YangMing Road, DongHu District, NanChang, 330006, China.
Background: Hepatocellular carcinoma (HCC) is a prevalent primary liver malignancy and a leading cause of cancer-related mortality worldwide. Despite advancements in therapeutic strategies, the 5-year survival rate for individuals undergoing curative resection remains between 10% and 15%. Consequently, identifying molecular targets that specifically inhibit the proliferation and metastasis of HCC cells is critical for improving treatment outcomes.
View Article and Find Full Text PDFSignal Transduct Target Ther
January 2025
Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
Cancers of the digestive system are major contributors to global cancer-associated morbidity and mortality, accounting for 35% of annual cases of cancer deaths. The etiologies, molecular features, and therapeutic management of these cancer entities are highly heterogeneous and complex. Over the last decade, genomic and functional studies have provided unprecedented insights into the biology of digestive cancers, identifying genetic drivers of tumor progression and key interaction points of tumor cells with the immune system.
View Article and Find Full Text PDFCell Death Dis
January 2025
School of Pharmacy, Faculty of Medicine & State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
Small extracellular vesicles (sEVs), carrying PD-L1, have been implicated in immune evasion and tumor progression. However, understanding how PD-L1 sEVs are secreted still needs to be improved. We found that the secretion dynamics of PD-L1 sEVs is similar to that of other sEVs.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Chemistry, University of North Texas1508 W Mulberry St, Denton, TX, 76201, USA.
Efficient removal of TcO from radioactive effluents while recovering drinking water remains a challenge. Herein, an excellent ReO (a nonradioactive surrogate of TcO ) scavenger is presented through covalently bonding imidazolium poly(ionic liquids) polymers with an ionic porous aromatic framework (iPAF), namely iPAF-P67, following an adsorption-site density-addition strategy. It shows rapid sorption kinetics, high uptake capacity, and exceptional selectivity toward ReO .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!