In this article, a novel approach of prescribed performance synchronization control is developed for heterogeneous nonlinear multiagent systems (MASs) subject to unknown actuator faults. Considering that not all followers are able to access the information of the leader, a distributed auxiliary perception system is proposed to estimate the state information of the leader to guarantee that the estimation errors converge to zero within fixed time. Then, based on the estimated states, a prescribed performance fault-tolerant control (FTC) approach is proposed, which achieves the user-defined performance specifications even in the presence of system faults. Moreover, as accurate system dynamic models are perhaps hard to acquire in practical engineering, a data-based method is proposed by using the reinforcement learning (RL) algorithm to design the fault-tolerant controller, which only needs the off-policy online data and is independent of the model dynamics of followers. The stability and synchronization with the prescribed behavior are guaranteed through the Lyapunov stability theorem. Finally, simulation results are presented to illustrate the effectiveness of the developed controller.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TCYB.2024.3374349DOI Listing

Publication Analysis

Top Keywords

prescribed performance
12
performance fault-tolerant
8
fault-tolerant control
8
heterogeneous nonlinear
8
reinforcement learning
8
prescribed
4
control synchronization
4
synchronization heterogeneous
4
nonlinear mass
4
mass reinforcement
4

Similar Publications

Resistance training (RT) load and volume are considered crucial variables to appropriately prescribe and manage for eliciting the targeted acute responses (i.e., minimizing neuromuscular fatigue) and chronic adaptations (i.

View Article and Find Full Text PDF

This paper studies the practical prescribed-time control problem for dual-arm robots handling an object with output constraints. Firstly, by utilizing the property that the sum of internal forces in the grasping space is zero, the system model is obtained and decomposed into the contact force model and free motion model, which are orthogonal to each other. Furthermore, by combining the performance function and constraint function, the original system tracking error is transformed to a new one, whose boundedness can ensure that the original system variable converges to the predetermined range within the specified time.

View Article and Find Full Text PDF

Background: The Scottish Computed Tomography of the Heart (SCOT-HEART) trial demonstrated that management guided by coronary CT angiography (CCTA) improved the diagnosis, management, and outcome of patients with stable chest pain. We aimed to assess whether CCTA-guided care results in sustained long-term improvements in management and outcomes.

Methods: SCOT-HEART was an open-label, multicentre, parallel group trial for which patients were recruited from 12 outpatient cardiology chest pain clinics across Scotland.

View Article and Find Full Text PDF

Objective: To develop and validate a prognostic model for risk-stratified monitoring of 5-aminosalicylate nephrotoxicity.

Methods: This UK retrospective cohort study used data from the Clinical Practice Research Datalink Aurum and Gold for model development and validation respectively. It included adults newly diagnosed with inflammatory bowel disease and established on 5-aminosalicylic acid (5-ASA) treatment between 1 January 2007 and 31 December 2019.

View Article and Find Full Text PDF

Background: Recurrent shoulder dislocations often lead to multiple encounters for reduction and eventual surgical stabilization, both of which involve exposure to opioids and potentially increase the risk of chronic opioid exposure. The purpose of our study was to characterize shoulder instability and compare pre- and post-reduction opioid usage in singular dislocators (SD) and recurrent dislocators (RD).

Methods: This retrospective study was performed at a single academic institution using a prospective database.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!