Virucidal efficacy of hypochlorous acid water for aqueous phase and atomization against SARS-CoV-2.

J Water Health

Infection Control Research Center, The Omura Satoshi Memorial Institution, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan.

Published: March 2024

Coronavirus disease 2019 (COVID-19) is an infectious viral disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that emerged at the end of 2019. SARS-CoV-2 can be transmitted through droplets, aerosols, and fomites. Disinfectants such as alcohol, quaternary ammonium salts, and chlorine-releasing agents, including hypochlorous acid, are used to prevent the spread of SARS-CoV-2 infection. In the present study, we investigated the efficacy of ionless hypochlorous acid water (HOCl) in suspension and by spraying to inactivate SARS-CoV-2. The virucidal efficacy of HOCl solution in tests against SARS-CoV-2 was evaluated as 50% tissue culture infectious dose. Although the presence of organic compounds influenced the virucidal efficacy, HOCl treatment for 20 s was significantly effective to inactivate Wuhan and Delta strains in the suspension test. HOCl atomization for several hours significantly reduced the SARS-CoV-2 attached to plastic plates. These results indicate that HOCl solution with elimination containing NaCl and other ions may have high virucidal efficacy against SARS-CoV-2. This study provides important information about the virucidal efficacy and use of HOCl solution.

Download full-text PDF

Source
http://dx.doi.org/10.2166/wh.2024.348DOI Listing

Publication Analysis

Top Keywords

virucidal efficacy
20
hypochlorous acid
12
efficacy hocl
12
hocl solution
12
acid water
8
sars-cov-2
8
hocl
6
virucidal
5
efficacy
5
efficacy hypochlorous
4

Similar Publications

This study aimed to develop patches containing quercetin-loaded microcapsules and to evaluate their in vitro and in vivo safety and efficacy in preclinical surveys. A set of in vitro experiments evidenced the virucidal activity of quercetin against the HSV-1-KOS (sensitive to acyclovir) and HSV-1-AR (resistant to acyclovir) strains, with improved outcomes upon the first. The patches presented a homogeneous aspect, were easily handled, had a suitable bioadhesion, and possessed mechanical properties of soft and weak material, besides a pH compatible with human skin.

View Article and Find Full Text PDF

COVID-19 disease, triggered by SARS-CoV-2 virus infection, has led to more than 7.0 million deaths worldwide, with a significant fraction of recovered infected people reporting postviral symptoms. Smart surfaces functionalized with nanoparticles are a powerful tool to inactivate the virus and prevent the further spreading of the disease.

View Article and Find Full Text PDF

Virucidal activity of olanexidine gluconate against SARS-CoV-2.

Access Microbiol

January 2025

Department of Clinical Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan.

Antiseptics have been used for infection control against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Ethanol (EtOH) was found to be effective against SARS-CoV-2, while chlorhexidine gluconate (CHG) was less effective. Therefore, virucidal activity may differ between different classes of antiseptic agents.

View Article and Find Full Text PDF

Enveloped viruses, such as flaviviruses and coronaviruses, are pathogens of significant medical concern that cause severe infections in humans. Some photosensitizers are known to possess virucidal activity against enveloped viruses, targeting their lipid bilayer. Here we report a series of halogenated difluoroboron-dipyrromethene (BODIPYs) photosensitizers with strong virus-inactivating activity.

View Article and Find Full Text PDF

Photodynamic inactivation (PDI) has been revealed as a valuable approach against viral infections because of the fast therapeutic effect and low possibility of resistance development. The photodynamic inhibition of the infectivity of human herpes simplex virus type 1 (HSV-1) strain Victoria at different stages of its reproduction was studied. PDI activity was determined on extracellular virions, on the stage of their adsorption to the Madin-Darby bovine kidney (MDBK) cell line and inhibition of the viral replication stage by application of two tetra-methylpyridiloxy substituted gallium and zinc phthalocyanines (ZnPcMe and GaPcMe) upon 660 nm light exposure with a light-emitting diode (LED 660 nm).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!