Sperm capacitation is broadly defined as a suite of biochemical and biophysical changes resulting from the acquisition of fertilization ability. To gain insights into the regulation mechanism of crustacean sperm capacitation, 4D label-free quantitative proteomics was first applied to analyze the changes of sperm in under three sequential physiological conditions: seminal vesicles (X2), hatched with the seminal receptacle content (X3), and incubated with egg water (X5). In total, 1536 proteins were identified, among which 880 proteins were quantified, with 82 and 224 proteins significantly altered after incubation with the seminal receptacle contents and egg water. Most differentially expressed proteins were attributed to biological processes by Gene Ontology annotation analysis. As the fundamental bioenergetic metabolism of sperm, the oxidative phosphorylation, glycolysis, and the pentose phosphate pathway presented significant changes under the treatment of seminal receptacle contents, indicating intensive regulation for sperm in the seminal receptacle. Additionally, the seminal receptacle contents also significantly increased the oxidation level of sperm, whereas the enhancement of abundance in superoxide dismutase, peroxiredoxin 1, and glutathione S-transferase after incubation with egg water significantly improved the resistance against oxidation. These results provided a new perspective for reproduction studies in crustaceans.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jproteome.3c00711 | DOI Listing |
Arthropod Struct Dev
January 2025
Zoological Museum, University of Kiel, Hegewischstrasse 3, 24105, Kiel, Germany.
The objective of this study is to gain a better understanding of the not well understood egg-transportation mechanisms through the female reproductive systems of crabs. For this, Carcinus maenas was chosen as a model to study the cuticular epithelium underlying the cuticle of the vagina and the ventral seminal receptacle. This cuticular epithelium is investigated by performing histochemical and ultrastructural analyses of the epithelial cells.
View Article and Find Full Text PDFGlucose-6-Phosphatase (G6Pase), a key enzyme in gluconeogenesis and glycogenolysis in the mammalian liver and kidney, converts glucose-6-phosphate to glucose for maintaining systemic blood glucose homeostasis during nutrient deprivation. However, its function has remained elusive in insects, which have no need for G6Pase in sugar homeostasis since they convert glucose-6-phosphate to trehalose, their main circulating sugar, via trehalose phosphate synthase (TPS1). In this study we identify an unexpected and essential requirement for G6Pase in male fertility, specifically to produce motile sperm.
View Article and Find Full Text PDFZootaxa
March 2024
Colección de Aracnológica (CARCIB); Programa Académico de Planeación Ambiental y Conservación (PLAYCO); Centro de Investigaciones Biológicas del Noroeste (CIBNOR) S.C. Km. 1 Carretera a San Juan de La Costa "EL COMITAN"; C.P. 23205; La Paz; Baja California Sur; Mexico.
In modern systematics, different sources of evidence are commonly used for the discovery, identification, and delimitation of species, especially when morphology fails to delineate between species or in underestimated species complexes or cryptic species. In this study, morphological data and two DNA barcoding markers-cytochrome c oxidase subunit I (COI) and internal transcribed spacer 2 (ITS2)-were used to delimit species in the spider genus Loxosceles from North America. The molecular species delimitation analyses were carried out using three different methods under the corrected p-distance Neighbor-Joining (NJ) criteria: 1) Assemble Species by Automatic Partitioning (ASAP), 2) General Mixed Yule Coalescent model (GMYC), and 3) Bayesian Poisson Tree Processes (bPTP).
View Article and Find Full Text PDFNat Ecol Evol
November 2024
Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, NY, USA.
Our understanding of animal ornaments and the mating preferences driving their exaggeration is limited by knowledge of their genetics. Post-copulatory sexual selection is credited with the rapid evolution of female sperm-storage organ morphology and corresponding sperm quality traits across diverse taxa. In Drosophila, the mechanisms by which longer flagella convey an advantage in the competition among sperm for limited storage space in the female, and by which female sperm-storage organ morphology biases fertilization in favour of longer sperm have been resolved.
View Article and Find Full Text PDFArthropod Struct Dev
May 2024
Department of Life Sciences, University of Siena, Siena, Italy. Electronic address:
The ultrastructural study on the female reproductive system of the beetle M. brevicauda (Mordellidae) confirmed the positive correlation between the length of the sperm and the size of the female seminal receptacle (Spermatheca). The spermatheca of the species is characterized by an apical bulb-like structure where the spermathecal duct forms numerous folds filled with sperm.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!