Freshwaters are highly threatened ecosystems that are vulnerable to chemical pollution and climate change. Freshwater taxa vary in their sensitivity to chemicals and changes in species composition can potentially affect the sensitivity of assemblages to chemical exposure. Here we explore the potential consequences of future climate change on the composition and sensitivity of freshwater macroinvertebrate assemblages to chemical stressors using the UK as a case study. Macroinvertebrate assemblages under end of century (2080-2100) and baseline (1980-2000) climate conditions were predicted for 608 UK sites for four climate scenarios corresponding to mean temperature changes of 1.28 to 3.78°C. Freshwater macroinvertebrate toxicity data were collated for 19 chemicals and the hierarchical species sensitivity distribution model was used to predict the sensitivity of untested taxa using relatedness within a Bayesian approach. All four future climate scenarios shifted assemblage compositions, increasing the prevalence of Mollusca, Crustacea and Oligochaeta species, and the insect taxa of Odonata, Chironomidae, and Baetidae species. Contrastingly, decreases were projected for Plecoptera, Ephemeroptera (except for Baetidae) and Coleoptera species. Shifts in taxonomic composition were associated with changes in the percentage of species at risk from chemical exposure. For the 3.78°C climate scenario, 76% of all assemblages became more sensitive to chemicals and for 18 of the 19 chemicals, the percentage of species at risk increased. Climate warming-induced increases in sensitivity were greatest for assemblages exposed to metals and were dependent on baseline assemblage composition, which varied spatially. Climate warming is predicted to result in changes in the use, environmental exposure and toxicity of chemicals. Here we show that, even in the absence of these climate-chemical interactions, shifts in species composition due to climate warming will increase chemical risk and that the impact of chemical pollution on freshwater macroinvertebrate biodiversity may double or quadruple by the end of the 21st century.

Download full-text PDF

Source
http://dx.doi.org/10.1111/gcb.17254DOI Listing

Publication Analysis

Top Keywords

climate warming
12
freshwater macroinvertebrate
12
climate
10
chemical pollution
8
climate change
8
species
8
species composition
8
assemblages chemical
8
chemical exposure
8
future climate
8

Similar Publications

Climate change has heightened the need to understand physical climate risks, such as the increasing frequency and severity of heat waves, for informed financial decision-making. This study investigates the financial implications of extreme heat waves on stock returns in Europe and the United States. Accordingly, the study combines meteorological and stock market data by integrating methodologies from both climate science and finance.

View Article and Find Full Text PDF

The small-sized cervid Procervulus is considered as the most basal member of the Cervidae and one of the earliest ruminants bearing antler-like appendages. The Iberian Miocene record of this stem-cervid is extensively documented and largely overlaps with the Miocene Climatic Optimum (MCO), a transient period of global warming of particular interest when comparing present and near future conditions. Despite receiving a substantial amount of attention, histological studies on Procervulus are very scarce and only limited to postcranial remains of Procervulus praelucidus from Germany (MN3).

View Article and Find Full Text PDF

Variations in land surface temperature increase in South-East Asian Cities.

Environ Monit Assess

January 2025

Mathematics Department, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, Indonesia.

Climate change and global warming are terms used to describe the variation in the Earth's mean temperature as a result of human activities contributing to the formation of urban heat islands (UHI). One method for determining the temperature of a region is the land surface temperature (LST). The study of LSTs is important and closely related to climate change, as is the provision of convenient living and working conditions in cities, which support economic growth.

View Article and Find Full Text PDF

Vegetation fires release a large fraction of light-absorbing components, which can contribute to the melting of snowpack and alpine glaciers. However, the relationship between variability in fire emissions and alpine glacier melting on the Third Pole (TP) remains poorly understood. This study provides evidence that carbon emissions from windward vegetation fires play a crucial role in comprehending glacier melting on the TP, particularly during the months of intense vegetation fires from March to May for monsoon-dominated glaciers and from June to October for westerlies-dominated glaciers.

View Article and Find Full Text PDF

Human activities increasingly threaten marine ecosystems through rising waste and temperatures. This study investigated the role of plastics as vectors for bacteria and the effects of temperature on the marine sponge . Samples of plastics and sponges were collected during July, August (high-temperature period), and November (lower-temperature period).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!