Background: Machine learning (ML) approaches have become increasingly popular in predicting surgical outcomes. However, it is unknown whether they are superior to traditional statistical methods such as logistic regression (LR). This study aimed to perform a systematic review and meta-analysis to compare the performance of ML vs LR models in predicting postoperative outcomes for patients undergoing gastrointestinal (GI) surgery.

Methods: A systematic search of Embase, MEDLINE, Cochrane, Web of Science, and Google Scholar was performed through December 2022. The primary outcome was the discriminatory performance of ML vs LR models as measured by the area under the receiver operating characteristic curve (AUC). A meta-analysis was then performed using a random effects model.

Results: A total of 62 LR models and 143 ML models were included across 38 studies. On average, the best-performing ML models had a significantly higher AUC than the LR models (ΔAUC, 0.07; 95% CI, 0.04-0.09; P < .001). Similarly, on average, the best-performing ML models had a significantly higher logit (AUC) than the LR models (Δlogit [AUC], 0.41; 95% CI, 0.23-0.58; P < .001). Approximately half of studies (44%) were found to have a low risk of bias. Upon a subset analysis of only low-risk studies, the difference in logit (AUC) remained significant (ML vs LR, Δlogit [AUC], 0.40; 95% CI, 0.14-0.66; P = .009).

Conclusion: We found a significant improvement in discriminatory ability when using ML over LR algorithms in predicting postoperative outcomes for patients undergoing GI surgery. Subsequent efforts should establish standardized protocols for both developing and reporting studies using ML models and explore the practical implementation of these models.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gassur.2024.03.006DOI Listing

Publication Analysis

Top Keywords

machine learning
8
postoperative outcomes
8
systematic review
8
review meta-analysis
8
performance models
8
models
6
learning improves
4
improves prediction
4
prediction postoperative
4
outcomes gastrointestinal
4

Similar Publications

Predicting phage-host interaction via hyperbolic Poincaré graph embedding and large-scale protein language technique.

iScience

January 2025

Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, the College of Life Sciences, Northwest University, Xi'an 710069, China.

Bacteriophages (phages) are increasingly viewed as a promising alternative for the treatment of antibiotic-resistant bacterial infections. However, the diversity of host ranges complicates the identification of target phages. Existing computational tools often fail to accurately identify phages across different bacterial species.

View Article and Find Full Text PDF

Over the last decade, Hippo signaling has emerged as a major tumor-suppressing pathway. Its dysregulation is associated with abnormal expression of and -family genes. Recent works have highlighted the role of YAP1/TEAD activity in several cancers and its potential therapeutic implications.

View Article and Find Full Text PDF

Artificial intelligence-based framework for early detection of heart disease using enhanced multilayer perceptron.

Front Artif Intell

January 2025

Department of Computer Science and Artificial Intelligence, College of Computing and Information Technology, University of Bisha, Bisha, Saudi Arabia.

Cardiac disease refers to diseases that affect the heart such as coronary artery diseases, arrhythmia and heart defects and is amongst the most difficult health conditions known to humanity. According to the WHO, heart disease is the foremost cause of mortality worldwide, causing an estimated 17.8 million deaths every year it consumes a significant amount of time as well as effort to figure out what is causing this, especially for medical specialists and doctors.

View Article and Find Full Text PDF

Background: Chronic obstructive pulmonary disease (COPD) affects breathing, speech production, and coughing. We evaluated a machine learning analysis of speech for classifying the disease severity of COPD.

Methods: In this single centre study, non-consecutive COPD patients were prospectively recruited for comparing their speech characteristics during and after an acute COPD exacerbation.

View Article and Find Full Text PDF

The successful design and deployment of next-generation nuclear technologies heavily rely on thermodynamic data for relevant molten salt systems. However, the lack of accurate force fields and efficient methods has limited the quality of thermodynamic predictions from atomistic simulations. Here we propose an efficient free energy framework for computing chemical potentials, which is the central free energy quantity behind many thermodynamic properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!