AI Article Synopsis

  • Keshan disease (KD) is a heart condition linked to low selenium levels, primarily found in certain areas of China.
  • Selenium plays a crucial role in protecting cells from damage, and a deficiency is believed to contribute to the development of KD.
  • A successful selenium supplementation program in China has significantly reduced KD incidence, but the disease's exact causes and the long-term effects of selenium on KD still require further investigation.

Article Abstract

Keshan disease (KD) is a type of endemic cardiomyopathy with an unknown cause. It is primarily found in areas in China with low selenium levels, from northeast to southwest. The nutritional biogeochemical etiology hypothesis suggests that selenium deficiency is a major factor in KD development. Selenium is important in removing free radicals and protecting cells and tissues from peroxide-induced damage. Thus, low environmental selenium may affect the selenium level within the human body, and selenium level differences are commonly observed between healthy people in KD and nonKD areas. From the 1970s to the 1990s, China successfully reduced KD incidence in endemic KD areas through a selenium supplementation program. After years of implementing prevention and control measures, the selenium level of the population in the KD areas has gradually increased, and the prevalence of KD in China has remained low and stable in recent years. Currently, the pathogenesis of KD remains vague, and the effect of selenium supplementation on the prognosis of KD still needs further study. This paper comprehensively reviews selenium deficiency and its connection to KD. Thus, this study aims to offer novel ideas and directions to effectively prevent and treat KD in light of the current situation.

Download full-text PDF

Source
http://dx.doi.org/10.1536/ihj.23-628DOI Listing

Publication Analysis

Top Keywords

selenium level
12
selenium
10
keshan disease
8
selenium deficiency
8
selenium supplementation
8
advances selenium
4
selenium nutrition
4
nutrition keshan
4
disease keshan
4
disease type
4

Similar Publications

Uptake of metals, metalloids, and radiocesium varies with habitat use among passerine communities at coal combustion and nuclear fission legacy waste sites.

Environ Pollut

December 2024

Savannah River Ecology Laboratory, University of Georgia, P.O. Drawer E, Aiken, SC 29802, USA; Warnell School of Forestry and Natural Resources, University of Georgia, 180 E Green St, Athens, GA 30602, USA.

Releases of coal combustion and nuclear fission wastes create contaminated landscapes that pose long-term management challenges. Efforts to facilitate the natural attenuation of legacy wastes in the environment can provide attractive habitat for passerine birds. Passerines have diverse foraging and nesting behaviors that lead to heterogenous contaminant exposure, yet few studies investigate contaminant uptake in passerines on a community scale.

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) is a neurodevelopmental disorder emerging during early childhood. However, the mechanism underlying the pathogenesis of ASD remains unclear. This study investigated the alterations of elements in serum and prefrontal cortex of BTBR T + tf/J (BTBR) mice and potential mechanisms.

View Article and Find Full Text PDF

The effects of 5.8-GHz microwave (MW) irradiation on the synthesis of mesoporous selenium nanoparticles (mSeNPs) in aqueous medium by reduction of selenite ions with ascorbic acid, using zinc nanoparticles as a hard template and cetyltrimethylammonium bromide (CTAB) as a micellar template, are examined for the first time with a particular emphasis on MW-particle interactions and the NPs morphology. This MW-assisted synthesis is compared to 2.

View Article and Find Full Text PDF

Characterization of the effect of low-concentration sodium selenite on the microstructure and quality of yeast-leavened steamed bread using X-ray computed tomography.

Food Chem

December 2024

Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of life and health sciences, Hubei University of Technology, Wuhan, Hubei 430068, PR China.

Dough fermentation is an effective method for selenium conversion. This study investigated the effects of low NaSeO concentrations on the morphology, texture, fermentation properties, Se species, Se bioaccessibility, and antioxidant capacity of two types of yeast-leaved steamed bread. The results indicated that NaSeO did not significantly affect the specific volume; but it did result in increased hardness.

View Article and Find Full Text PDF

Imbalances in several trace elements related to antioxidant function may lead to autism spectrum disorder (ASD)-related physiological dysfunction. Nonetheless, contradictory results have been found on the connection between these elements and ASD, and studies of their joint effects and interactions have been insufficient. We therefore designed a case-control study of 152 ASD children and 152 age- and sex-matched typically developing (TD) children to explore the individual and combined associations of manganese (Mn), zinc (Zn), copper (Cu), and selenium (Se) with ASD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!