Enhancing the soluble expression of α-1,2-fucosyltransferase in E. coli using high-throughput flow cytometry screening coupled with a split-GFP.

J Biotechnol

School of Chemical and Biological Engineering, Seoul National University, Seoul, South Korea; Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea; Interdisciplinary Program for Biochemical Engineering and Biotechnology, Seoul National University, Seoul, South Korea; Bio-MAX/N-Bio Institute, Seoul National University, Seoul, South Korea; Institute for Sustainable Development (ISD), Seoul National University, Seoul, South Korea. Electronic address:

Published: May 2024

2'-Fucosyllactose (2'-FL), one of the major human milk oligosaccharides, was produced in several engineered microorganisms. However, the low solubility of α-1,2-fucosyltransferase (α1,2-FucT) often becomes a bottleneck to produce maximum amount of 2'-FL in the microorganisms. To overcome this solubility issue, the following studies were conducted to improve the soluble expression of α1,2-FucT. Initially, hydrophobic amino acids in the hydrophilic region of the 6 α-helices were mutated, adhering to the α-helix rule. Subsequently, gfp11 was fused to the C-terminal of futC gene encoding α1,2-FucT (FutC), enabling selection of high-fluorescence mutants through split-GFP. Each mutant library was screened via fluorescence activated cell sorting (FACS) to separate soluble mutants for high-throughput screening. As a result, L80C single mutant and A121D/P124A/L125R triple mutant were found, and a combined quadruple mutant was created. Furthermore, we combined mutations of conserved sequences (Q150H/C151R/Q239S) of FutC, which showed positive effects in the previous studies from our lab, with the above quadruple mutants (L80C/A121D/P124A/L125R). The resulting strain produced approximately 3.4-fold higher 2'-FL titer than that of the wild-type, suggesting that the conserved sequence mutations are an independent subset of the mutations that further improve the solubility of the target protein acquired by random mutagenesis using split-GFP.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiotec.2024.03.014DOI Listing

Publication Analysis

Top Keywords

soluble expression
8
enhancing soluble
4
expression α-12-fucosyltransferase
4
α-12-fucosyltransferase coli
4
coli high-throughput
4
high-throughput flow
4
flow cytometry
4
cytometry screening
4
screening coupled
4
coupled split-gfp
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!