Enrichment of a mixed syngas-converting culture for volatile fatty acids and methane production.

Bioresour Technol

Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain. Electronic address:

Published: May 2024

The present study evaluated the production potential of CH, carboxylic acids and alcohols from a mixed culture enriched using synthetic syngas. The influence of syngas concentration on the microbial community and products productivity and selectivity was investigated. The results demonstrated the enrichment of a mesophilic mixed culture capable of converting CO and H mainly to CH and acetate, along with butyrate. The selectivity values showed that acetate production was enhanced during the first cycle in all conditions tested (up to 20 %), while CH was the main product generated during following cycles. Concretely, CH selectivity remained unaffected by syngas concentration, reaching a stable value of 41.6 ± 2.0 %. On the other hand, butyrate selectivity was only representative at the highest syngas concentration and lower pH values (26.1 ± 5.8 %), where the H consumption was completely inhibited. Thus, pH was identified as a key parameter for both butyrate synthesis and the development of hydrogenotrophic activity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2024.130646DOI Listing

Publication Analysis

Top Keywords

syngas concentration
12
mixed culture
8
butyrate selectivity
8
enrichment mixed
4
mixed syngas-converting
4
syngas-converting culture
4
culture volatile
4
volatile fatty
4
fatty acids
4
acids methane
4

Similar Publications

Suppression of carbon footprint through the CO-assisted pyrolysis of livestock waste.

Sci Total Environ

January 2025

Department of Earth Resources & Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea. Electronic address:

Concentrated animal feeding operation facility in modern livestock industry is pointed out as a point site causing environmental pollution due to massive generation of manure. While livestock manure is conventionally treated through biological processes, composting and anaerobic digestion, these practices pose difficulties in achieving efficient carbon utilization. To address this, this study suggests a pyrolytic valorization of livestock manure, with a focus on enhancing syngas production.

View Article and Find Full Text PDF

Sun-simulated-driven production of high-purity methanol from carbon dioxide.

Nat Commun

January 2025

MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, Analysis and Testing Center, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China.

CO conversion to CHOH under mild conditions is of particular interest yet rather challenging. Both electro- and thermo-catalytic CO reduction to CHOH can only produce CHOH in low concentration (typically mixed with water), requiring energy-intensive purification processes. Here we design a sun-simulated-driven tandem catalytic system comprising CO electroreduction to syngas, and further photothermal conversion into high-purity CHOH (volume fraction > 97%).

View Article and Find Full Text PDF

Carbon dioxide-mediated catalytic pyrolysis of lignin in syngas production.

Int J Biol Macromol

January 2025

Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea. Electronic address:

Kraft lignin (KL), a byproduct of the pulp and paper industry, is commonly combusted as a low-grade fuel. However, its high sulphur content results in the emission of sulphur oxides, which pose environmental hazards. This study explores a sustainable approach for the valorisation of waste KL into syngas via CO-mediated pyrolysis.

View Article and Find Full Text PDF

CO driven tunable syngas synthesis via CO photoreduction using a novel NiCo bimetallic metal-organic frameworks.

J Colloid Interface Sci

April 2025

School of Chemistry, Sun Yat-sen University, Guangzhou 510275, Guangdong, China. Electronic address:

Syngas has important industrial applications, and converting CO to CO is critical for syngas production. Metal-organic frameworks (MOFs) have demonstrated significant potential in photocatalytic syngas conversion, although the impact of catalytic reactions on tunable H/CO ratios remains unclear. Herein, we present a novel bimetallic NiCo-MOF catalyst, NiCo, exhibiting high catalytic activity in syngas conversion due to the CO product self-driven effect.

View Article and Find Full Text PDF

To comprehensively explore syngas cocombustion technology, gasification experiments in a bench-scale circulating fluidized bed (CFB) and three-dimensional (3D) numerical simulations of a coal-fired boiler furnace have been conducted. In the amplification experiment of biomass gasification, sawdust has been gasified using air, oxygen-enriched air, and steam. The highest heating value of the syngas products reaches 12.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!