Organic carbon accumulation in British saltmarshes.

Sci Total Environ

School of Geography and Sustainable Development, University of St Andrews, St Andrews, United Kingdom; Scottish Association of Marine Science, Oban, United Kingdom.

Published: May 2024

Saltmarshes are a crucial component of the coastal carbon (C) system and provide a natural climate regulation service through the accumulation and long-term storage of organic carbon (OC) in their soils. These coastal ecosystems are under growing pressure from a changing climate and increasing anthropogenic disturbance. To manage and protect these ecosystems for C and to allow their inclusion in emissions and natural-capital accounting, as well as carbon markets, accurate and reliable estimates of OC accumulation are required. However, globally, such data are rare or of varying quality. Here, we quantify sedimentation rates and OC densities for 21 saltmarshes in Great Britain (GB). We estimate that, on average, saltmarshes accumulate OC at a rate of 110.88 ± 43.12 g C m yr. This is considerably less than widely applied global saltmarsh averages. It is therefore highly likely that the contribution of northern European saltmarshes to global saltmarsh OC accumulation has been significantly overestimated. Taking account of the climatic, geomorphological, oceanographic, and ecological characteristics of all GB saltmarshes and the areal extent of different saltmarsh zones, we estimate that the 451.65 km of GB saltmarsh accumulates 46,563 ± 4353 t of OC annually. These low OC accumulation rates underline the importance of the 5.20 ± 0.65 million tonnes of OC already stored in these vulnerable coastal ecosystems. Going forward the protection and preservation of the existing stores of OC in GB saltmarshes must be a priority for the UK as this will provide climate benefits through avoided emissions several times more significant than the annual accumulation of OC in these ecosystems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.172104DOI Listing

Publication Analysis

Top Keywords

organic carbon
8
coastal ecosystems
8
global saltmarsh
8
saltmarshes
7
accumulation
6
carbon accumulation
4
accumulation british
4
british saltmarshes
4
saltmarshes saltmarshes
4
saltmarshes crucial
4

Similar Publications

Bio-inspired carbon-based artificial muscle with precise and continuous morphing capabilities.

Natl Sci Rev

January 2025

CAS Key Laboratory of Organic Solids, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

In the face of advancements in microrobotics, intelligent control and precision medicine, artificial muscle actuation systems must meet demands for precise control, high stability, environmental adaptability and high integration miniaturization. Carbon materials, being lightweight, strong and highly conductive and flexible, show great potential for artificial muscles. Inspired by the butterfly's proboscis, we have developed a carbon-based artificial muscle, hydrogen-substituted graphdiyne muscle (HsGDY-M), fabricated efficiently using an emerging hydrogen-substituted graphdiyne (HsGDY) film with an asymmetrical surface structure.

View Article and Find Full Text PDF

Soda lakes are unique double-extreme habitats characterized by high salinity and soluble carbonate alkalinity, yet harboring rich prokaryotic life. Despite intensive microbiology studies, little is known about the identity of the soda lake hydrolytic bacteria responsible for the primary degradation of the biomass organic matter, in particular cellulose. In this study, aerobic and anaerobic enrichment cultures with three forms of native insoluble cellulose inoculated with sediments from five soda lakes in south-western Siberia resulted in the isolation of four cellulotrophic haloalkaliphilic bacteria and their four saccharolytic satellites.

View Article and Find Full Text PDF

The functionalization of the C-N bond of amines is a straightforward strategy for the construction of complex scaffolds or for the late-stage functionalization of pharmaceuticals. Herein, we describe a photoredox-catalyzed strategy for the deaminative alkylation of primary amine-derived isonitriles that provides unnatural amino acid derivatives under mild conditions. The use of silacarboxylic acids as silyl radical precursors enables the generation of carbon-centered radicals that allow the construction of Csp-Csp bonds via a Giese-type addition, avoiding the undesired hydrodeamination product.

View Article and Find Full Text PDF

High Molecular-Weight Organics as Precursors for Toxic Iodinated Disinfection Byproducts during Chloramination.

Environ Sci Technol

January 2025

State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.

Iodinated DBPs (I-DBPs), many more toxic than regulated chlorinated and/or brominated DBPs, are a major challenge in the supply of safe drinking water. While over 800 DBPs have been identified, the occurrence and precursors of toxic I-DBPs remain poorly understood. Herein, natural organic matter from two raw drinking waters was fractionated using ultrafiltration membranes into different groups based on molecular weight (MW).

View Article and Find Full Text PDF

We report a Ni-catalyzed vicinal alkylarylation of unactivated alkenes in γ,δ- and δ,ε-alkenylamines with aryl halides and alkylzinc reagents. The reaction is enabled by amine coordination and can use all primary, secondary, and tertiary amines. The reaction constructs two new C(sp)-C(sp) and C(sp)-C(sp) bonds and produces δ- and ε-arylamines with C(sp)-branching at the γ- and δ-positions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!