Thermal rectification in novel two-dimensional hybrid graphene/BCN sheets: A molecular dynamics simulation.

J Mol Graph Model

Department of Mechanical and Aerospace Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana 010000, Kazakhstan.

Published: June 2024

The graphene-like monolayer of carbon, boron and nitrogen that maintains the native hexagonal atomic lattice (BCN), is a novel semiconductor with special thermal properties. Herein, with the aid of a non-equilibrium molecular dynamics approach (NEMD), we study phonon thermal rectification in a hybrid system of pure graphene and BCN (G-BCN) in various configurations under a series of positive and negative temperature gradients. We begin by investigating the relation of thermal rectification to sample's mean temperature, T, and the imposed temperature difference, ΔT, between the two heat baths at its ends. We then move to explore the effect of varying strain levels of our sample on thermal rectification, followed by Kapitza resistance calculations at the G-BCN interface, which shed light on the interface effects on thermal rectification. Our simulation results reveal a BCN-configuration-dependent behavior of thermal rectification. Finally, the underlying mechanism leading to a preferred direction for phonons is studied using phonon density of states (DOS) on both sides of the G-BCN interface.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmgm.2024.108763DOI Listing

Publication Analysis

Top Keywords

thermal rectification
24
molecular dynamics
8
g-bcn interface
8
thermal
7
rectification
5
rectification novel
4
novel two-dimensional
4
two-dimensional hybrid
4
hybrid graphene/bcn
4
graphene/bcn sheets
4

Similar Publications

Rapid electrothermal upcycling hexachlorobutadiene (HCBD) polluted distillation residue into turbostratic graphene for enhanced electromagnetic wave absorption.

J Hazard Mater

January 2025

Institute of Zhejiang University - Quzhou, No. 99 Zheda Road, Quzhou 324000, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China. Electronic address:

The trichloroethylene production industry generates high-boiling-point solid residues during rectification, which contain high concentrations of chlorinated contaminants, particularly hexachlorobutadiene (HCBD). Traditionally, these distillation residues are managed through co-incineration or landfilling, leading to environmental and economic challenges. In this study, we present a rapid and environmentally friendly electrothermal approach for both detoxifying and upcycling distillation residue into graphene-based electromagnetic wave (EMW) absorbing materials.

View Article and Find Full Text PDF

The warm Western Boundary Currents (WBCs) and their zonal extensions are persistent, deep, strong and narrow oceanic currents. They are known to anchor and energize the Extra-Tropical storm tracks by frontal thermal air-sea interactions. However, even in the latest generation of climate models, WBCs are characterized by large biases, and both the present storm-track activity and its recent intensification are poorly estimated.

View Article and Find Full Text PDF

CMFX: Cross-modal fusion network for RGB-X crowd counting.

Neural Netw

December 2024

College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China. Electronic address:

Currently, for obtaining more accurate counts, existing methods primarily utilize RGB images combined with features of complementary modality (X-modality) for counting. However, designing a model that can adapt to various sensors is still an unsolved issue due to the differences in features between different modalities. Therefore, this paper proposes a unified fusion framework called CMFX for RGB-X crowd counting.

View Article and Find Full Text PDF

A thermal diode, which, by analogy to its electrical counterpart, rectifies heat current, is the building block for thermal circuits. To realize a thermal diode, we demonstrate thermal rectification in a GaAs telescopic nanowire system using the thermal bridge method. We measured a preferred direction of heat flux, achieving rectification values ranging from 2 to 8% as a function of applied thermal bias.

View Article and Find Full Text PDF

Mask-Enabled Topography Contrast on Aluminum Surfaces.

Langmuir

December 2024

Department of Mechanical Engineering, Rice University, Houston, Texas 77005, United States.

Patterned solid surfaces with wettability contrast can enhance liquid transport for applications such as electronics thermal management, self-cleaning, and anti-icing. However, prior work has not explored easy and scalable blade-cut masking to impart topography patterned wettability contrast on aluminum (Al), even though Al surfaces are widely used for thermal applications. Here, we demonstrate mask-enabled topography contrast patterning and quantify the resulting accuracy of the topographic pattern resolution, spatial variations in surface roughness, wettability, drop size distribution during dropwise condensation, and thermal emissivity of patterned Al surfaces.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!