The co-assembly of polyelectrolytes (PE) with proteins offers a promising approach for designing complex structures with customizable morphologies, charge distribution, and stability for targeted cargo delivery. However, the complexity of protein structure limits our ability to predict the properties of the formed nanoparticles, and our goal is to identify the key triggers of the morphological transition in protein/PE complexes and evaluate their ability to encapsulate multivalent ionic drugs. A positively charged PE can assemble with a protein at pH above isoelectric point due to the electrostatic attraction and disassemble at pH below isoelectric point due to the repulsion. The additional hydrophilic block of the polymer should stabilize the particles in solution and enable them to encapsulate a negatively charged drug in the presence of PE excess. We demonstrated that diblock copolymers, poly(ethylene oxide)-block-poly(N,N-dimethylaminoethyl methacrylate) and poly(ethylene oxide)-block-poly(N,N,N-trimethylammonioethyl methacrylate), consisting of a polycation block and a neutral hydrophilic block, reversibly co-assemble with insulin in pH range between 5 and 8. Using small-angle neutron and X-ray scattering (SANS, SAXS), we showed that insulin arrangement within formed particles is controlled by intermolecular electrostatic forces between protein molecules, and can be tuned by varying ionic strength. For the first time, we observed by fluorescence that formed protein/PE complexes with excess of positive charges exhibited potential for encapsulating and controlled release of negatively charged bivalent drugs, protoporphyrin-IX and zinc(II) protoporphyrin-IX, enabling the development of nanocarriers for combination therapies with adjustable charge, stability, internal structure, and size.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2024.03.156 | DOI Listing |
J Colloid Interface Sci
July 2024
Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstraße 1, 85747 Garching, Germany.
The co-assembly of polyelectrolytes (PE) with proteins offers a promising approach for designing complex structures with customizable morphologies, charge distribution, and stability for targeted cargo delivery. However, the complexity of protein structure limits our ability to predict the properties of the formed nanoparticles, and our goal is to identify the key triggers of the morphological transition in protein/PE complexes and evaluate their ability to encapsulate multivalent ionic drugs. A positively charged PE can assemble with a protein at pH above isoelectric point due to the electrostatic attraction and disassemble at pH below isoelectric point due to the repulsion.
View Article and Find Full Text PDFPolymers (Basel)
March 2022
Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia.
The action of three types of co-solutes: (i) salts (NaCl, NaBr, NaI), (ii) polymer (polyethylene glycol; PEG-400, PEG-3000, PEG-20000), and (iii) sugars (sucrose, sucralose) on the complexation between bovine serum albumin (BSA) and sodium polystyrene sulfonate (NaPSS) was studied. Three critical pH parameters were extracted from the pH dependence of the solution’s turbidity: pHc corresponding to the formation of the soluble complexes, pHΦ corresponding to the formation of the insoluble complexes, and pHopt corresponding to the charge neutralization of the complexes. In the presence of salts, the formation of soluble and insoluble complexes as well as the charge neutralization of complexes was hindered, which is a consequence of the electrostatic screening of attractive interactions between BSA and NaPSS.
View Article and Find Full Text PDFLangmuir
February 2020
Institute of Condensed Matter and Nanosciences , Université catholique de Louvain, Place Louis Pasteur, 1 bte L4.01.10 , B-1348 Louvain-la-Neuve , Belgium.
The deconstruction of self-assemblies based on proteins and polyelectrolytes (PEs) and the subsequent release of intact proteins require either a switch from attractive to repulsive mode or particular PE properties (degradability, responsiveness, or differential affinity). Here, an interfacial self-assembly made of three charged species, i.e.
View Article and Find Full Text PDFJ Phys Chem B
October 2019
Facultad Regional San Rafael , Universidad Tecnológica Nacional , San Rafael 5600 , Argentina.
Complexation between the β-lactoglobulin and a weak acid polyelectrolyte (PE) has been studied using Monte Carlo simulations. Different coarse-grained models were used to represent the system, and two different acidic constants were used on the PE model. The protein-PE interaction is quantified considering the average PE monomers adsorbed on the protein as a function of pH.
View Article and Find Full Text PDFPolymers (Basel)
January 2019
State-Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
This review discussed the mechanisms including theories and binding stages concerning the protein⁻polyelectrolyte (PE) interaction, as well as the applications for both complexation and coacervation states of protein⁻PE pairs. In particular, this review focused on the applications of titration techniques, that is, turbidimetric titration and isothermal titration calorimetry (ITC), in understanding the protein⁻PE binding process. To be specific, by providing thermodynamic information such as pH, pH, binding constant, entropy, and enthalpy change, titration techniques could shed light on the binding affinity, binding stoichiometry, and driving force of the protein⁻PE interaction, which significantly guide the applications by utilization of these interactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!