Disease interactions between farmed and wild populations have been poorly documented for most aquaculture species, in part due to the complexities to study this. Here, we tested 567 farmed Atlantic salmon escapees, captured in a Norwegian river during 2014-2018, for five viral infections that are prevalent in global salmonid aquaculture. Over 90% of the escapees were infected with one or more viruses. Overall prevalences were: 75.7% for piscine orthoreovirus (PRV-1), 43.6% for salmonid alphavirus (SAV), 31.2% for piscine myocarditis virus (PMCV), 1.2% for infectious pancreatic necrosis virus (IPNV) and 0.4% for salmon anaemia virus (ISAV). A significantly higher prevalence of PMCV infection was observed in immature compared to mature individuals. The prevalence of both SAV and PMCV infections was higher in fish determined by fatty acid profiling to be 'recent' as opposed to 'early' escapees that had been in the wild for a longer period of time. This is the first study to establish a time-series of viral infection status of escapees entering a river with a native salmon population. Our results demonstrate that farmed escapees represent a continuous source of infectious agents which could potentially be transmitted to wild fish populations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jfd.13950 | DOI Listing |
Front Antibiot
February 2024
School of Biosciences & Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom.
Antimicrobial resistance is a growing public health concern, increasingly recognized as a silent pandemic across the globe. Therefore, it is important to monitor all factors that could contribute to the emergence, maintenance and spread of antimicrobial resistance. Environmental antibiotic pollution is thought to be one of the contributing factors.
View Article and Find Full Text PDFEcology
January 2025
Center for Ecosystem Science and Society, Department of Biology, Northern Arizona University, Flagstaff, Arizona, USA.
Fungi play a crucial role in aquatic leaf litter decomposition. Aquatic fungi have long been thought to spend the majority of their lives in the water. Here, we explore the possibility of an amphibious life cycle, where phyllosphere fungi spend part of their life cycle in aquatic systems.
View Article and Find Full Text PDFJ Vis Exp
December 2024
1State Key Laboratory of Tree Genetics and Breeding, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry; Comprehensive Experimental Center in Yellow River Delta of Chinese Academy of Forestry; Tianjin Institute of Forestry Science, Chinese Academy of Forestry;
Cryptobiosis is a state where organisms lose nearly all their internal water and enter anhydrobiosis under extreme environmental stress. The dispersal third-stage juveniles (pre-dauer juveniles, ) of Bursaphelenchus xylophilus can enter cryptobiosis through dehydration and revive upon rehydration when environmental conditions improve. Osmotic regulation is crucial for their survival in this process.
View Article and Find Full Text PDFMar Environ Res
January 2025
National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, 325035, Wenzhou, China; Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, 325035, Wenzhou, China. Electronic address:
Zn is a common heavy metal pollutant in water bodies and accounts for the largest proportion of heavy metal pollutants in many rivers entering the sea. This study investigated the growth and physiological response characteristics of Sargassum fusiforme under different divalent Zn ion concentration gradients. We observed that low concentration Zn treatment (<2 mg L) exerted no significant effect on the growth rate, photosynthesis, and nitrogen metabolism-related indicators of S.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Central Pollution Control Board, MoEF & CC, Government of India, New Delhi, India.
The swift industrial expansion has posed significant environmental challenges, particularly in the context of water pollution. Industrial effluents consist of substantial amounts of harmful pollutants that enter the main rivers via various tapped and untapped drains/local water streams, causing alterations in their physical and chemical properties. This study investigated 153 grossly polluting industries (GPIs) that were identified to release their effluents into the main rivers through different drains within multiple sectors in the industrial zone of four northern states of India in 2023.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!