Motivated by unique topological semimetals in condensed matter physics, we propose an effective Hamiltonian with four degrees of freedom to describe evolutions of photonic double Weyl nodal line semimetals in one-dimensional hyper-crystals, which supports the energy bands translating or rotating independently in the form of Weyl quasiparticles. Especially, owing to the unit cells without inversion symmetry, a pair of reflection-phase singularities carrying opposite topological charges emerge near each nodal line, and result in a unique bilateral drumhead surface state. After reducing radiation leakages and absorption losses, these two singularities gather together gradually, and form a quasi-bound state in the continuum (quasi-BIC) ring at the nodal line ultimately. Our work not only reports the first realization of controllable photonics Weyl nodal line semimetals, establishes a bridge between two independent topological concepts-BICs and Weyl semimetals, but also heralds new possibilities for unconventional device applications, such as dual-mode schemes for highly sensitive sensing and switching.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10981722 | PMC |
http://dx.doi.org/10.1038/s41467-024-47125-7 | DOI Listing |
Nano Lett
January 2025
Key Laboratory of Materials Physics, Institute of Solid State Physics, Hefei Institutes of Physical Science (HFIPS), Chinese Academy of Sciences, Hefei, Anhui 230031, China.
Two-dimensional (2D) room-temperature chiral multiferroic and magnetic topological materials are essential for constructing functional spintronic devices, yet their number is extremely limited. Here, by using the chiral and polar HPP (HPP = 4-(3-hydroxypyridin-4-yl)pyridin-3-ol) as an organic linker and transition metals (TM = Cr, Mo, W) as nodes, we predict a class of 2D TM(HPP) organometallic nanosheets that incorporate homochirality, room-temperature magnetism, ferroelectricity, and topological nodes. The homochirality is introduced by chiral HPP linkers, and the change in structural chirality induces a topological phase transition of Weyl phonons.
View Article and Find Full Text PDFSci Adv
January 2025
New Cornerstone Science Laboratory, Department of Physics, The University of Hong Kong, Hong Kong 999077, China.
Real multi-bandgap systems have non-abelian topological charges, with Euler semimetals being a prominent example characterized by real triple degeneracies (RTDs) in momentum space. These RTDs serve as "Weyl points" for real topological phases. Despite theoretical interest, experimental observations of RTDs have been lacking, and studies mainly focus on individual RTDs.
View Article and Find Full Text PDFJ Phys Condens Matter
December 2024
AKPC Mahavidyalaya, Bengai, West Bengal 712611, India.
A nodal surface semimetal (NSSM) features symmetry enforced band crossings along a surface within the three-dimensional (3D) Brillouin zone (BZ) and a presence of a nonsymmorphic symmetry there pushes such surfaces to stick to the BZ center or boundaries. The topological robustness of the same does not always come with nonzero Berry fluxes. We consider two such NS, one with zero and another with nonzero topological charges and investigate the effect of light irradiation on them.
View Article and Find Full Text PDFInorg Chem
December 2024
School of Physical Science and Technology, Northwestern Polytechnical University, Xian 710072, China.
In this paper, we have performed a crystal structure screening and properties prediction framework within the noncentrosymmetric AMX system, which arises from the intercalation of elements in transition metal dichalcogenides. After rigorous evaluations of thermodynamic and dynamic stability, we have refined our initial structure pool of 504 crystals to a focused set of 48 promising candidates. Analysis of their electronic properties has revealed that 23 of these crystals exhibit semiconducting behavior.
View Article and Find Full Text PDFJ Phys Condens Matter
November 2024
Department of Electronic Science and Engineering, Tianjin Key Laboratory of Efficient Utilization of Solar Energy, Engineering Research Center of Thin Film Optoelectronics Technology (Ministry of Education), Nankai University, Tianjin 300350, People's Republic of China.
Realizing novel two-dimensional (2D) magnetic states would accelerate the development of advanced spintronic devices and the understandings of 2D magnetic physics. In this paper, we have examined the magnetic and electronic properties of 20 dynamically stable and exfoliable MXO (M = Ti-Ni; X = S-Te; excluding CoTeO). It has been unveiled that [XO]-and [M]-crystal fields govern the M-3orbital splittings in MXO.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!