Emissions from internal combustion vehicles are currently not properly monitored throughout their life cycle. Remote emission sensing (RES) is a technology that can measure emissions under real driving conditions without contact. Current light extinction based RES systems are capable of providing emission factors for various gases, but lack accuracy for particulate matter (PM). Point Sampling (PS) is an extraction-based RES technique that can measure gases as well as various particle metrics such as black carbon or particle number. In this work, we evaluated the performance of a recently developed PS system and the state-of-the-art light extinction based remote sensing devices EDAR (HEAT) and ORSD (OPUS RSE) during co-location measurements. Validation measurements with portable emission measurement systems and emissions screening of several thousand cars in three European cities provide detailed insights into system's performance. Meteorological evaluations showed that the PS capture rate is strongly influenced by wind, but no other weather influences were found. Both light extinction based systems are unable to measure during rain. We found that all three systems tested were capable of screening NO emissions from pre-Euro 6 diesel cars. Measurement results show the ability of the PS system to quantify high and low PM emitters equally well. The open-path RES systems (EDAR, ORSD) are capable of estimating PM emissions from pre-Euro 5 diesel cars. However, deficiencies of open-path RES systems are evident in the quantification of PM emissions from newer engine technologies (diesel Euro 5 and beyond) and from petrol cars. The PS system has a 2 to 5 times lower capture rate than open-path RES systems, but the PS measurement results are more accurate (more than 5 times for PM and more than 1.35 times for NO). The good accuracy of individual measurements makes PS a powerful tool for reliable high emitter identification.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.171710 | DOI Listing |
Microbiol Res
January 2025
State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China. Electronic address:
Pseudomonas aeruginosa is a prominent respiratory pathogen in cystic fibrosis (CF) patients, thriving in the hypoxic airway mucus. Previous studies have established the role of the oxygen-binding hemerythrin, Mhr, in enhancing P. aeruginosa's fitness under microaerobic conditions.
View Article and Find Full Text PDFJMIR Res Protoc
January 2025
Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden.
Background: Although existing disease preparedness and response frameworks provide guidance about strengthening emergency response capacity, little attention is paid to health service continuity during emergency responses. During the 2014 Ebola outbreak, there were 11,325 reported deaths due to the Ebola virus and yet disruption in access to care caused more than 10,000 additional deaths due to measles, HIV/AIDS, tuberculosis, and malaria. Low- and middle-income countries account for the largest disease burden due to HIV, tuberculosis, and malaria and yet previous responses to health emergencies showed that HIV, tuberculosis, and malaria service delivery can be significantly disrupted.
View Article and Find Full Text PDFJ Med Internet Res
January 2025
Hospital Administration, Ramaiah Memorial Hospital, Bengaluru, Karnataka, India.
Background: Monitoring vital signs in hospitalized patients is crucial for evaluating their clinical condition. While early warning scores like the modified early warning score (MEWS) are typically calculated 3 to 4 times daily through spot checks, they might not promptly identify early deterioration. Leveraging technologies that provide continuous monitoring of vital signs, combined with an early warning system, has the potential to identify clinical deterioration sooner.
View Article and Find Full Text PDFJMIR Form Res
January 2025
Institute of Nursing Science, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
Background: Health care systems and the nursing profession worldwide are being transformed by technology and digitalization. Nurses acquire digital competence through their own experience in daily practice, but also from education and training; nursing education providers thus play an important role. While nursing education providers have some level of digital competence, there is a need for ongoing training and support for them to develop more advanced skills and effectively integrate technology into their teaching.
View Article and Find Full Text PDFJ Med Internet Res
January 2025
Vibrent Health, Inc, Fairfax, VA, United States.
Background: Longitudinal cohort studies have traditionally relied on clinic-based recruitment models, which limit cohort diversity and the generalizability of research outcomes. Digital research platforms can be used to increase participant access, improve study engagement, streamline data collection, and increase data quality; however, the efficacy and sustainability of digitally enabled studies rely heavily on the design, implementation, and management of the digital platform being used.
Objective: We sought to design and build a secure, privacy-preserving, validated, participant-centric digital health research platform (DHRP) to recruit and enroll participants, collect multimodal data, and engage participants from diverse backgrounds in the National Institutes of Health's (NIH) All of Us Research Program (AOU).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!