Acids from fruits generate photoactive Fe-complexes, enhancing solar disinfection of water (SODIS): A systematic study of the novel "fruto-Fenton" process, effective over a wide pH range (4 - 9).

Water Res

Universidad Politécnica de Madrid, E.T.S. de Ingenieros de Caminos, Canales y Puertos, Departamento de Ingeniería Civil: Hidráulica, Energía y Medio Ambiente, Environment, Coast and Ocean Research Laboratory (ECOREL-UPM), c/Profesor Aranguren s/n 28040, Madrid, Spain; Environmental Remediation and Biocatalysis Group, Institute of Chemistry, Faculty of Exact and Natural Sciences, Universidad de Antioquia, Calle, 70 No. 52-21, Medellín, Colombia; Colombian Academy of Exact, Physical and Natural Sciences, Carrera 28 A No. 39A-63, Bogotá, Colombia.

Published: May 2024

This study aimed to enhance solar disinfection (SODIS) by the photo-Fenton process, operated at natural pH, through the re-utilization of fruit wastes. For this purpose, pure organic acids present in fruits and alimentary wastes were tested and compared with synthetic complexing agents. Owing to solar light, complexes between iron and artificial or natural chelators can be regenerated through ligand-to-metal charge transfer (LMCT) during disinfection. The target complexes were photoactive under solar light, and the Fe:Ligand ratios for ex situ prepared iron complexes were assessed, achieving a balance between iron solubilization and competition with bacteria as a target for oxidizing species. In addition, waste extracts containing natural acidic ligands were an excellent raw material for our disinfection enhancement purposes. Indeed, lemon and orange juice or their peel infusions turned out to be more efficient than commercially available organic acids, leading to complete inactivation in less than 1 h by this novel "fruto-Fenton" process, i.e. in the presence of a fruit-derived ligand, Fe(II) and HO. Finally, its application in Lake Leman water and in situ complex generation led to effective bacterial inactivation, even in mildly alkaline surface waters. This work proposes interesting SODIS and fruit-mediated photo-Fenton enhancements for bacterial inactivation in resource-poor contexts and/or under the prism of circular economy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2024.121518DOI Listing

Publication Analysis

Top Keywords

acids fruits
8
solar disinfection
8
novel "fruto-fenton"
8
"fruto-fenton" process
8
organic acids
8
solar light
8
bacterial inactivation
8
fruits generate
4
generate photoactive
4
photoactive fe-complexes
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!