Metallomic mapping of gut and brain in heavy metal exposed earthworms: A novel paradigm in ecotoxicology.

Biochem Biophys Res Commun

Department of Analytical, Environmental and Forensic Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom. Electronic address:

Published: May 2024

This study explored the uptake of lead in the epigeic earthworm Dendrobaena veneta exposed to 0, 1000, and 2500 μg Pb/g soil. The soil metal content was extracted using strong acid digestion and water leaching, and analysed by means of Inductively Coupled Plasma Mass Spectrometry (ICP-MS) to estimate absolute and bioavailable concentrations of metals in the soil. The guts and heads of lead-exposed earthworms were processed into formalin-fixed and paraffin embedded sections for high-resolution multi-element metallomic imaging via Laser Ablation ICP-MS (LA-ICP-MS). Metallomic maps of phosphorus, zinc, and lead were produced at 15-μm resolution in the head and gut of D. veneta. Additional 4-μm resolution metallomic maps of the earthworm brains were taken, revealing the detailed localisation of metals in the brain. The Pb bioaccumulated in the chloragogenous tissues of the earthworm in a dose-dependent manner, making it possible to track the extent of soil contamination. The bioaccumulation of P and Zn in earthworm tissues was independent of Pb exposure concentration. This approach demonstrates the utility of LA-ICP-MS as a powerful approach for ecotoxicology and environmental risk assessments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11458488PMC
http://dx.doi.org/10.1016/j.bbrc.2024.149827DOI Listing

Publication Analysis

Top Keywords

metallomic maps
8
metallomic
4
metallomic mapping
4
mapping gut
4
gut brain
4
brain heavy
4
heavy metal
4
metal exposed
4
exposed earthworms
4
earthworms novel
4

Similar Publications

Nontraditional stable isotopes of bioactive metals emerged as novel proxies for reconstructing the biogeochemical cycling of metals, which serve as cofactors in major metabolic pathways. The fractionation of metal isotopes between ambient fluid and microorganisms is ultimately recorded in authigenic minerals, such as carbonates, which makes them potentially more reliable than standard biomarkers in organic matter. Stromatolitic carbonates are geochemical archives that allow for the study of the long-term interplay of the biosphere, atmosphere, and hydrosphere through deep time, with the unique potential to investigate early life environments and the evolution of the metallome.

View Article and Find Full Text PDF

Metallomic mapping of gut and brain in heavy metal exposed earthworms: A novel paradigm in ecotoxicology.

Biochem Biophys Res Commun

May 2024

Department of Analytical, Environmental and Forensic Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom. Electronic address:

This study explored the uptake of lead in the epigeic earthworm Dendrobaena veneta exposed to 0, 1000, and 2500 μg Pb/g soil. The soil metal content was extracted using strong acid digestion and water leaching, and analysed by means of Inductively Coupled Plasma Mass Spectrometry (ICP-MS) to estimate absolute and bioavailable concentrations of metals in the soil. The guts and heads of lead-exposed earthworms were processed into formalin-fixed and paraffin embedded sections for high-resolution multi-element metallomic imaging via Laser Ablation ICP-MS (LA-ICP-MS).

View Article and Find Full Text PDF

Synchrotron-based micro-X-ray fluorescence analysis (µXRF) is a nondestructive and highly sensitive technique. However, element mapping of rare earth elements (REEs) under standard conditions requires care, since energy-dispersive detectors are not able to differentiate accurately between REEs L-shell X-ray emission lines overlapping with K-shell X-ray emission lines of common transition elements of high concentrations. We aim to test REE element mapping with high-energy interference-free excitation of the REE K-lines on hyperaccumulator plant tissues and compare with measurements with REE L-shell excitation at the microprobe experiment of beamline P06 (PETRA III, DESY).

View Article and Find Full Text PDF

Multiparametric Tissue Characterization Utilizing the Cellular Metallome and Immuno-Mass Spectrometry Imaging.

JACS Au

February 2023

Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, Vienna 1090, Austria.

In this study, we present a workflow that enables spatial single-cell metallomics in tissue decoding the cellular heterogeneity. Low-dispersion laser ablation in combination with inductively coupled plasma time-of-flight mass spectrometry (LA-ICP-TOFMS) provides mapping of endogenous elements with cellular resolution at unprecedented speed. Capturing the heterogeneity of the cellular population by metals only is of limited use as the cell type, functionality, and cell state remain elusive.

View Article and Find Full Text PDF

Visualizing the endogenous distribution of elements within plant organs affords key insights in the regulation of trace elements in plants. Hyperaccumulators have extreme metal(loid) concentrations in their tissues, which make them useful models for studying metal(loid) homeostasis in plants. X-ray-based methods allow for the nondestructive analysis of most macro and trace elements with low limits of detection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!