A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A model-based MR parameter mapping network robust to substantial variations in acquisition settings. | LitMetric

A model-based MR parameter mapping network robust to substantial variations in acquisition settings.

Med Image Anal

School of Biomedical Engineering, Southern Medical University, Guangzhou 510000, China; Guangdong Provincial Key Laboratory of Medical Image Processing & Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou 510000, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence & Key Laboratory of Mental Health of the Ministry of Education & Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Southern Medical University, Guangzhou 510000, China; Department of Radiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan 528000, China. Electronic address:

Published: May 2024

Deep learning methods show great potential for the efficient and precise estimation of quantitative parameter maps from multiple magnetic resonance (MR) images. Current deep learning-based MR parameter mapping (MPM) methods are mostly trained and tested using data with specific acquisition settings. However, scan protocols usually vary with centers, scanners, and studies in practice. Thus, deep learning methods applicable to MPM with varying acquisition settings are highly required but still rarely investigated. In this work, we develop a model-based deep network termed MMPM-Net for robust MPM with varying acquisition settings. A deep learning-based denoiser is introduced to construct the regularization term in the nonlinear inversion problem of MPM. The alternating direction method of multipliers is used to solve the optimization problem and then unrolled to construct MMPM-Net. The variation in acquisition parameters can be addressed by the data fidelity component in MMPM-Net. Extensive experiments are performed on R mapping and R mapping datasets with substantial variations in acquisition settings, and the results demonstrate that the proposed MMPM-Net method outperforms other state-of-the-art MR parameter mapping methods both qualitatively and quantitatively.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.media.2024.103148DOI Listing

Publication Analysis

Top Keywords

acquisition settings
20
parameter mapping
12
substantial variations
8
variations acquisition
8
settings deep
8
deep learning
8
learning methods
8
deep learning-based
8
mpm varying
8
varying acquisition
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!