A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Membrane fluctuations of human red blood cells investigated by the current signal noise in scanning ion conductance microscopy. | LitMetric

Membrane fluctuations of human red blood cells investigated by the current signal noise in scanning ion conductance microscopy.

Micron

Istituto Nazionale di Ottica, Consiglio Nazionale delle Ricerche (INO-CNR), Via Moruzzi 1, Pisa 56124, Italy. Electronic address:

Published: June 2024

Human red blood cells show submicron membrane fluctuations (CMFs) that have been mainly studied with optical microscopies. Although the functional role of this phenomenon is still uncertain, the amplitude of membrane fluctuations is considered as an indicator of mechanical resilience to the stress encountered in the capillary beds. We investigate here the membrane fluctuations in red blood cells using the scanning ion conductance microscopy (SICM), a scanning probe technique that avoids the probe-sample contact. The ion current noise was recorded at a fixed distance from the cell and converted in terms of membrane fluctuation amplitude using as a converting factor the slope of the current-distance curve. We found that CMF amplitude was irreversibly reduced by membrane cross-link. Both whole cell and local increase of membrane tension induced a reduction of CMF amplitude. As for the biochemical regulation of membrane dynamics, we observed that the activation of the noradrenergic transduction pathway, via β-receptors, increased the CMF amplitude. We conclude that the CMFs recorded by SICM and those optically recorded on red blood cells share the main features. In addition SICM provides high spatial and temporal resolution as well as the possibility to apply through the glass pipette acting as probe chemical or physical stimuli to the membrane area where the CMFs are recorded.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.micron.2024.103635DOI Listing

Publication Analysis

Top Keywords

membrane fluctuations
16
red blood
16
blood cells
16
cmf amplitude
12
membrane
9
human red
8
scanning ion
8
ion conductance
8
conductance microscopy
8
cmfs recorded
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!